WLEDD: Legal judgment prediction with legal feature word subgraph label-embedding and dual-knowledge distillation

对偶(语法数字) 特征(语言学) 词(群论) 计算机科学 嵌入 人工智能 文字嵌入 自然语言处理 模式识别(心理学) 数学 语言学 哲学 几何学
作者
Xiao Wei,Yidian Lin
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-237323
摘要

Legal judgment prediction(LJP) has achieved remarkable results. However, existing methods still face problems such as difficulties in obtaining key feature words for charges, which impose limitations on the improvement of prediction results. To this end, we propose a legal judgment prediction model with legal feature Word subgraph Label-Embedding and Dual-knowledge Distillation(WLEDD). Compared with traditional methods, our method has two contributions: (1) To mitigate the impact of overly sparse tail class data and high similarity text representations, we capture the critical features related to the charges by fusing LDA and legal feature word subgraphs. Then we encode them as label information to obtain highly distinguished representations of legal documents. (2) To solve the problem of high difficulty in some subtasks in LJP, we perform subtask-oriented compression of models to construct a student model with lower complexity and higher accuracy through dual knowledge distillation. Moreover, we exploit the logical association between the subtasks to constrain the labels of articles by charge prediction results. It greatly reduces the difficulty of article prediction. Experimental results on four datasets show that our approach significantly outperforms the baseline models. Compared with the state-of-art method, the F1 value of WLEDD for charge prediction has increased by an average of 2.57% . For article prediction, the F1 value has increased by an average of 1.09% . In addition, we demonstrate its effectiveness through ablation experiments and analytical experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鲤鱼萧完成签到,获得积分10
刚刚
李爱国应助zheweitang采纳,获得10
1秒前
fan发布了新的文献求助10
1秒前
指尖心事完成签到,获得积分10
1秒前
小脚丫完成签到,获得积分10
1秒前
1秒前
1秒前
Het完成签到,获得积分20
1秒前
1秒前
冷静白亦发布了新的文献求助10
2秒前
科研通AI6应助英勇的听荷采纳,获得10
2秒前
2秒前
ZY发布了新的文献求助10
3秒前
清欢发布了新的文献求助10
3秒前
伯赏迎松完成签到,获得积分10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得20
4秒前
雪白阑悦发布了新的文献求助10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
赘婿应助书晨采纳,获得10
4秒前
4秒前
4秒前
虚幻百川应助科研通管家采纳,获得10
4秒前
橘子小狗完成签到,获得积分10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
Rivarez发布了新的文献求助10
4秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
5秒前
曲奇饼干应助科研通管家采纳,获得10
5秒前
Mic应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
5秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585532
求助须知:如何正确求助?哪些是违规求助? 4669292
关于积分的说明 14776112
捐赠科研通 4618063
什么是DOI,文献DOI怎么找? 2530567
邀请新用户注册赠送积分活动 1499302
关于科研通互助平台的介绍 1467697