WLEDD: Legal judgment prediction with legal feature word subgraph label-embedding and dual-knowledge distillation

对偶(语法数字) 特征(语言学) 词(群论) 计算机科学 嵌入 人工智能 文字嵌入 自然语言处理 模式识别(心理学) 数学 语言学 哲学 几何学
作者
Xiao Wei,Yidian Lin
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-237323
摘要

Legal judgment prediction(LJP) has achieved remarkable results. However, existing methods still face problems such as difficulties in obtaining key feature words for charges, which impose limitations on the improvement of prediction results. To this end, we propose a legal judgment prediction model with legal feature Word subgraph Label-Embedding and Dual-knowledge Distillation(WLEDD). Compared with traditional methods, our method has two contributions: (1) To mitigate the impact of overly sparse tail class data and high similarity text representations, we capture the critical features related to the charges by fusing LDA and legal feature word subgraphs. Then we encode them as label information to obtain highly distinguished representations of legal documents. (2) To solve the problem of high difficulty in some subtasks in LJP, we perform subtask-oriented compression of models to construct a student model with lower complexity and higher accuracy through dual knowledge distillation. Moreover, we exploit the logical association between the subtasks to constrain the labels of articles by charge prediction results. It greatly reduces the difficulty of article prediction. Experimental results on four datasets show that our approach significantly outperforms the baseline models. Compared with the state-of-art method, the F1 value of WLEDD for charge prediction has increased by an average of 2.57% . For article prediction, the F1 value has increased by an average of 1.09% . In addition, we demonstrate its effectiveness through ablation experiments and analytical experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
毕业完成签到,获得积分20
4秒前
4秒前
蓦然发布了新的文献求助10
4秒前
星辰大海应助linlin采纳,获得10
6秒前
6秒前
原子完成签到,获得积分10
7秒前
7秒前
8秒前
汉堡包应助龙龍泷采纳,获得30
9秒前
10秒前
11秒前
FashionBoy应助hjc采纳,获得30
11秒前
13秒前
CipherSage应助沉静的友灵采纳,获得10
13秒前
oh发布了新的文献求助10
13秒前
14秒前
充电宝应助TJ采纳,获得30
15秒前
Cy发布了新的文献求助10
16秒前
小王要努力完成签到,获得积分10
16秒前
17秒前
小青椒应助hbgsns采纳,获得30
19秒前
云等道完成签到 ,获得积分10
20秒前
嘿嘿发布了新的文献求助10
20秒前
丽丽丽完成签到,获得积分10
20秒前
21秒前
龙龍泷发布了新的文献求助30
21秒前
22秒前
BowieHuang应助嘻嘻采纳,获得10
22秒前
L_Gary完成签到 ,获得积分10
23秒前
24秒前
hug沅沅完成签到 ,获得积分10
24秒前
丽丽丽发布了新的文献求助10
24秒前
两斤完成签到 ,获得积分20
25秒前
hjc发布了新的文献求助30
26秒前
27秒前
陈皮软糖完成签到 ,获得积分10
28秒前
小凡发布了新的文献求助10
28秒前
完美世界应助LLP采纳,获得10
28秒前
充电宝应助麟书夷采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563503
求助须知:如何正确求助?哪些是违规求助? 4648366
关于积分的说明 14684601
捐赠科研通 4590315
什么是DOI,文献DOI怎么找? 2518435
邀请新用户注册赠送积分活动 1491125
关于科研通互助平台的介绍 1462426