WLEDD: Legal judgment prediction with legal feature word subgraph label-embedding and dual-knowledge distillation

对偶(语法数字) 特征(语言学) 词(群论) 计算机科学 嵌入 人工智能 文字嵌入 自然语言处理 模式识别(心理学) 数学 语言学 哲学 几何学
作者
Xiao Wei,Yidian Lin
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-237323
摘要

Legal judgment prediction(LJP) has achieved remarkable results. However, existing methods still face problems such as difficulties in obtaining key feature words for charges, which impose limitations on the improvement of prediction results. To this end, we propose a legal judgment prediction model with legal feature Word subgraph Label-Embedding and Dual-knowledge Distillation(WLEDD). Compared with traditional methods, our method has two contributions: (1) To mitigate the impact of overly sparse tail class data and high similarity text representations, we capture the critical features related to the charges by fusing LDA and legal feature word subgraphs. Then we encode them as label information to obtain highly distinguished representations of legal documents. (2) To solve the problem of high difficulty in some subtasks in LJP, we perform subtask-oriented compression of models to construct a student model with lower complexity and higher accuracy through dual knowledge distillation. Moreover, we exploit the logical association between the subtasks to constrain the labels of articles by charge prediction results. It greatly reduces the difficulty of article prediction. Experimental results on four datasets show that our approach significantly outperforms the baseline models. Compared with the state-of-art method, the F1 value of WLEDD for charge prediction has increased by an average of 2.57% . For article prediction, the F1 value has increased by an average of 1.09% . In addition, we demonstrate its effectiveness through ablation experiments and analytical experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风华正茂完成签到,获得积分10
1秒前
康康完成签到 ,获得积分10
3秒前
柒z完成签到,获得积分10
5秒前
赘婿应助momo采纳,获得10
9秒前
油点小鳄完成签到,获得积分20
12秒前
13秒前
13秒前
桐桐应助wish采纳,获得10
14秒前
15秒前
桐桐应助百十余采纳,获得10
18秒前
义气如萱发布了新的文献求助10
18秒前
18秒前
19秒前
小二郎应助KM比比采纳,获得10
20秒前
不能吃了发布了新的文献求助10
20秒前
李健的粉丝团团长应助LJJ采纳,获得10
21秒前
22秒前
23秒前
体贴绝音发布了新的文献求助10
23秒前
24秒前
丘比特应助sakegeda采纳,获得10
26秒前
27秒前
wish发布了新的文献求助10
27秒前
不能吃了完成签到,获得积分10
28秒前
28秒前
29秒前
31秒前
好滴捏发布了新的文献求助10
33秒前
33秒前
pyt完成签到,获得积分10
34秒前
35秒前
英俊的铭应助不安的紫翠采纳,获得10
36秒前
37秒前
情怀应助SherlockHe采纳,获得10
37秒前
37秒前
39秒前
LJJ发布了新的文献求助10
40秒前
百十余发布了新的文献求助10
41秒前
43秒前
Neo完成签到,获得积分10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173