WLEDD: Legal judgment prediction with legal feature word subgraph label-embedding and dual-knowledge distillation

对偶(语法数字) 特征(语言学) 词(群论) 计算机科学 嵌入 人工智能 文字嵌入 自然语言处理 模式识别(心理学) 数学 语言学 哲学 几何学
作者
Xiao Wei,Yidian Lin
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-237323
摘要

Legal judgment prediction(LJP) has achieved remarkable results. However, existing methods still face problems such as difficulties in obtaining key feature words for charges, which impose limitations on the improvement of prediction results. To this end, we propose a legal judgment prediction model with legal feature Word subgraph Label-Embedding and Dual-knowledge Distillation(WLEDD). Compared with traditional methods, our method has two contributions: (1) To mitigate the impact of overly sparse tail class data and high similarity text representations, we capture the critical features related to the charges by fusing LDA and legal feature word subgraphs. Then we encode them as label information to obtain highly distinguished representations of legal documents. (2) To solve the problem of high difficulty in some subtasks in LJP, we perform subtask-oriented compression of models to construct a student model with lower complexity and higher accuracy through dual knowledge distillation. Moreover, we exploit the logical association between the subtasks to constrain the labels of articles by charge prediction results. It greatly reduces the difficulty of article prediction. Experimental results on four datasets show that our approach significantly outperforms the baseline models. Compared with the state-of-art method, the F1 value of WLEDD for charge prediction has increased by an average of 2.57% . For article prediction, the F1 value has increased by an average of 1.09% . In addition, we demonstrate its effectiveness through ablation experiments and analytical experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lslslslsllss发布了新的文献求助20
1秒前
超级的芹菜完成签到,获得积分10
1秒前
1秒前
1秒前
科研通AI6应助一只秤砣采纳,获得10
4秒前
加油少年发布了新的文献求助10
4秒前
Orange应助gg采纳,获得10
6秒前
6秒前
传统的青完成签到 ,获得积分10
8秒前
省级中药饮片完成签到 ,获得积分10
8秒前
9秒前
两袖清风发布了新的文献求助10
9秒前
bjyxszd完成签到 ,获得积分10
11秒前
wanci应助afuse5采纳,获得10
14秒前
无聊的土豆应助hou采纳,获得10
15秒前
16秒前
17秒前
17秒前
Yan3249完成签到,获得积分20
19秒前
深渊与海完成签到,获得积分10
19秒前
深情安青应助辛巴采纳,获得30
20秒前
lslslslsllss发布了新的文献求助20
20秒前
23秒前
23秒前
23秒前
23秒前
池台下完成签到 ,获得积分10
24秒前
25秒前
25秒前
25秒前
27秒前
大方的云朵完成签到,获得积分10
27秒前
科研通AI6应助hou采纳,获得10
28秒前
28秒前
gg发布了新的文献求助10
28秒前
Mr_Hao发布了新的文献求助10
30秒前
cx发布了新的文献求助10
30秒前
FashionBoy应助naturehome采纳,获得10
30秒前
lulululu完成签到,获得积分10
30秒前
辛巴发布了新的文献求助30
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373831
求助须知:如何正确求助?哪些是违规求助? 4499875
关于积分的说明 14007415
捐赠科研通 4406786
什么是DOI,文献DOI怎么找? 2420717
邀请新用户注册赠送积分活动 1413451
关于科研通互助平台的介绍 1390059