WLEDD: Legal judgment prediction with legal feature word subgraph label-embedding and dual-knowledge distillation

对偶(语法数字) 特征(语言学) 词(群论) 计算机科学 嵌入 人工智能 文字嵌入 自然语言处理 模式识别(心理学) 数学 语言学 哲学 几何学
作者
Xiao Wei,Yidian Lin
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-237323
摘要

Legal judgment prediction(LJP) has achieved remarkable results. However, existing methods still face problems such as difficulties in obtaining key feature words for charges, which impose limitations on the improvement of prediction results. To this end, we propose a legal judgment prediction model with legal feature Word subgraph Label-Embedding and Dual-knowledge Distillation(WLEDD). Compared with traditional methods, our method has two contributions: (1) To mitigate the impact of overly sparse tail class data and high similarity text representations, we capture the critical features related to the charges by fusing LDA and legal feature word subgraphs. Then we encode them as label information to obtain highly distinguished representations of legal documents. (2) To solve the problem of high difficulty in some subtasks in LJP, we perform subtask-oriented compression of models to construct a student model with lower complexity and higher accuracy through dual knowledge distillation. Moreover, we exploit the logical association between the subtasks to constrain the labels of articles by charge prediction results. It greatly reduces the difficulty of article prediction. Experimental results on four datasets show that our approach significantly outperforms the baseline models. Compared with the state-of-art method, the F1 value of WLEDD for charge prediction has increased by an average of 2.57% . For article prediction, the F1 value has increased by an average of 1.09% . In addition, we demonstrate its effectiveness through ablation experiments and analytical experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
雪白鸿涛发布了新的文献求助10
1秒前
1秒前
晨曦完成签到,获得积分10
2秒前
2秒前
4秒前
4秒前
曦梦源完成签到 ,获得积分10
4秒前
情怀应助雪白鸿涛采纳,获得10
5秒前
5秒前
sunnyhhh完成签到,获得积分10
6秒前
6秒前
勇往直前发布了新的文献求助10
7秒前
缥缈的千柳完成签到,获得积分20
7秒前
cfy完成签到,获得积分10
8秒前
8秒前
似水无痕完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
highhigh发布了新的文献求助10
11秒前
11秒前
Piwriy发布了新的文献求助10
11秒前
13秒前
科研通AI2S应助Rubia采纳,获得10
14秒前
16秒前
16秒前
16秒前
Hemingwayway发布了新的文献求助10
16秒前
17秒前
17秒前
youzi完成签到,获得积分10
18秒前
18秒前
19秒前
幽默梦之发布了新的文献求助10
20秒前
畅畅儿歌完成签到,获得积分10
20秒前
Helene完成签到 ,获得积分10
20秒前
徐翩跹发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265