WLEDD: Legal judgment prediction with legal feature word subgraph label-embedding and dual-knowledge distillation

对偶(语法数字) 特征(语言学) 词(群论) 计算机科学 嵌入 人工智能 文字嵌入 自然语言处理 模式识别(心理学) 数学 语言学 哲学 几何学
作者
Xiao Wei,Yidian Lin
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-237323
摘要

Legal judgment prediction(LJP) has achieved remarkable results. However, existing methods still face problems such as difficulties in obtaining key feature words for charges, which impose limitations on the improvement of prediction results. To this end, we propose a legal judgment prediction model with legal feature Word subgraph Label-Embedding and Dual-knowledge Distillation(WLEDD). Compared with traditional methods, our method has two contributions: (1) To mitigate the impact of overly sparse tail class data and high similarity text representations, we capture the critical features related to the charges by fusing LDA and legal feature word subgraphs. Then we encode them as label information to obtain highly distinguished representations of legal documents. (2) To solve the problem of high difficulty in some subtasks in LJP, we perform subtask-oriented compression of models to construct a student model with lower complexity and higher accuracy through dual knowledge distillation. Moreover, we exploit the logical association between the subtasks to constrain the labels of articles by charge prediction results. It greatly reduces the difficulty of article prediction. Experimental results on four datasets show that our approach significantly outperforms the baseline models. Compared with the state-of-art method, the F1 value of WLEDD for charge prediction has increased by an average of 2.57% . For article prediction, the F1 value has increased by an average of 1.09% . In addition, we demonstrate its effectiveness through ablation experiments and analytical experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
粗心的凡阳完成签到,获得积分10
4秒前
Lia完成签到,获得积分10
4秒前
水上汀州完成签到 ,获得积分10
5秒前
5秒前
111发布了新的文献求助10
5秒前
akui发布了新的文献求助10
6秒前
6秒前
123发布了新的文献求助10
6秒前
慕青应助丧彪采纳,获得10
7秒前
9秒前
9秒前
搜集达人应助傲娇玉米采纳,获得10
9秒前
百里烬言发布了新的文献求助20
9秒前
xxy发布了新的文献求助10
11秒前
今后应助年糕.采纳,获得30
11秒前
林悦酥发布了新的文献求助10
12秒前
磊磊猪完成签到,获得积分10
12秒前
akui完成签到,获得积分10
12秒前
liiiiiii发布了新的文献求助30
12秒前
正直凌文完成签到,获得积分10
13秒前
天天快乐应助sl采纳,获得10
13秒前
耶耶完成签到,获得积分10
14秒前
aa发布了新的文献求助10
14秒前
14秒前
wmfang完成签到,获得积分10
15秒前
16秒前
情怀应助15966014069采纳,获得10
17秒前
明理以南完成签到,获得积分10
17秒前
落寞的惜萱完成签到,获得积分20
18秒前
陈静发布了新的文献求助10
18秒前
上善若水发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
21秒前
我想U静静发布了新的文献求助10
21秒前
专注凡梅完成签到,获得积分10
21秒前
yaxuandeng完成签到,获得积分20
22秒前
Linda完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601274
求助须知:如何正确求助?哪些是违规求助? 4686785
关于积分的说明 14846051
捐赠科研通 4680352
什么是DOI,文献DOI怎么找? 2539276
邀请新用户注册赠送积分活动 1506151
关于科研通互助平台的介绍 1471283