WLEDD: Legal judgment prediction with legal feature word subgraph label-embedding and dual-knowledge distillation

对偶(语法数字) 特征(语言学) 词(群论) 计算机科学 嵌入 人工智能 文字嵌入 自然语言处理 模式识别(心理学) 数学 语言学 哲学 几何学
作者
Xiao Wei,Yidian Lin
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-237323
摘要

Legal judgment prediction(LJP) has achieved remarkable results. However, existing methods still face problems such as difficulties in obtaining key feature words for charges, which impose limitations on the improvement of prediction results. To this end, we propose a legal judgment prediction model with legal feature Word subgraph Label-Embedding and Dual-knowledge Distillation(WLEDD). Compared with traditional methods, our method has two contributions: (1) To mitigate the impact of overly sparse tail class data and high similarity text representations, we capture the critical features related to the charges by fusing LDA and legal feature word subgraphs. Then we encode them as label information to obtain highly distinguished representations of legal documents. (2) To solve the problem of high difficulty in some subtasks in LJP, we perform subtask-oriented compression of models to construct a student model with lower complexity and higher accuracy through dual knowledge distillation. Moreover, we exploit the logical association between the subtasks to constrain the labels of articles by charge prediction results. It greatly reduces the difficulty of article prediction. Experimental results on four datasets show that our approach significantly outperforms the baseline models. Compared with the state-of-art method, the F1 value of WLEDD for charge prediction has increased by an average of 2.57% . For article prediction, the F1 value has increased by an average of 1.09% . In addition, we demonstrate its effectiveness through ablation experiments and analytical experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
飞快的逊发布了新的文献求助10
1秒前
1秒前
科研通AI6应助overu采纳,获得10
2秒前
李健的小迷弟应助常青叶采纳,获得10
3秒前
Ing完成签到,获得积分10
3秒前
4秒前
beejimmy完成签到,获得积分20
4秒前
curry完成签到 ,获得积分20
5秒前
斯文莺完成签到,获得积分10
5秒前
科研通AI6应助善良茗茗采纳,获得10
5秒前
6秒前
筱敏完成签到,获得积分10
7秒前
qinyi发布了新的文献求助10
7秒前
7秒前
7秒前
刘月茹完成签到,获得积分10
7秒前
熬夜波比应助rui采纳,获得10
7秒前
7秒前
7秒前
8秒前
狂野萤应助潇洒台灯采纳,获得10
8秒前
科研通AI6应助星空0427采纳,获得80
8秒前
上官若男应助huangtao采纳,获得10
8秒前
结实天荷发布了新的文献求助10
9秒前
hzs完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
孟辰凡发布了新的文献求助30
11秒前
能干的尔竹完成签到,获得积分20
11秒前
SZH发布了新的文献求助30
12秒前
QY发布了新的文献求助20
12秒前
我爱物理发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
baibaili发布了新的文献求助10
14秒前
96121abc完成签到,获得积分10
14秒前
奋斗战斗机完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660477
求助须知:如何正确求助?哪些是违规求助? 4834050
关于积分的说明 15090734
捐赠科研通 4819078
什么是DOI,文献DOI怎么找? 2579049
邀请新用户注册赠送积分活动 1533576
关于科研通互助平台的介绍 1492330