WLEDD: Legal judgment prediction with legal feature word subgraph label-embedding and dual-knowledge distillation

对偶(语法数字) 特征(语言学) 词(群论) 计算机科学 嵌入 人工智能 文字嵌入 自然语言处理 模式识别(心理学) 数学 语言学 哲学 几何学
作者
Xiao Wei,Yidian Lin
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-237323
摘要

Legal judgment prediction(LJP) has achieved remarkable results. However, existing methods still face problems such as difficulties in obtaining key feature words for charges, which impose limitations on the improvement of prediction results. To this end, we propose a legal judgment prediction model with legal feature Word subgraph Label-Embedding and Dual-knowledge Distillation(WLEDD). Compared with traditional methods, our method has two contributions: (1) To mitigate the impact of overly sparse tail class data and high similarity text representations, we capture the critical features related to the charges by fusing LDA and legal feature word subgraphs. Then we encode them as label information to obtain highly distinguished representations of legal documents. (2) To solve the problem of high difficulty in some subtasks in LJP, we perform subtask-oriented compression of models to construct a student model with lower complexity and higher accuracy through dual knowledge distillation. Moreover, we exploit the logical association between the subtasks to constrain the labels of articles by charge prediction results. It greatly reduces the difficulty of article prediction. Experimental results on four datasets show that our approach significantly outperforms the baseline models. Compared with the state-of-art method, the F1 value of WLEDD for charge prediction has increased by an average of 2.57% . For article prediction, the F1 value has increased by an average of 1.09% . In addition, we demonstrate its effectiveness through ablation experiments and analytical experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助缓慢含烟采纳,获得10
刚刚
浮游应助宇文天思采纳,获得10
2秒前
研友_LweedZ发布了新的文献求助10
3秒前
Jasper应助学术混子采纳,获得10
3秒前
QQW完成签到 ,获得积分10
4秒前
4秒前
好的好的发布了新的文献求助10
4秒前
5秒前
深情安青应助dzdzzzzzzzzzz采纳,获得10
6秒前
无花果应助粒粒采纳,获得20
6秒前
zhouyunan完成签到,获得积分10
8秒前
9秒前
10秒前
缓慢含烟发布了新的文献求助10
10秒前
薄荷完成签到 ,获得积分10
13秒前
缓慢含烟完成签到,获得积分10
15秒前
爆米花应助我要吃鱼采纳,获得10
15秒前
好的好的完成签到 ,获得积分20
17秒前
seeyou完成签到 ,获得积分10
19秒前
顾矜应助加油少年采纳,获得10
20秒前
眼睛大花生完成签到,获得积分10
22秒前
22秒前
陈勇杰发布了新的文献求助10
24秒前
跳跃小伙完成签到 ,获得积分10
24秒前
24秒前
25秒前
酷波er应助危机的赛君采纳,获得10
25秒前
26秒前
加油通发布了新的文献求助10
26秒前
26秒前
Stella应助隐形的凡阳采纳,获得10
27秒前
28秒前
29秒前
29秒前
崔译文发布了新的文献求助10
30秒前
scuff发布了新的文献求助10
30秒前
LuckyM发布了新的文献求助10
31秒前
领导范儿应助科研通管家采纳,获得10
31秒前
Akim应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557486
求助须知:如何正确求助?哪些是违规求助? 4642578
关于积分的说明 14668531
捐赠科研通 4583986
什么是DOI,文献DOI怎么找? 2514487
邀请新用户注册赠送积分活动 1488830
关于科研通互助平台的介绍 1459454