WLEDD: Legal judgment prediction with legal feature word subgraph label-embedding and dual-knowledge distillation

对偶(语法数字) 特征(语言学) 词(群论) 计算机科学 嵌入 人工智能 文字嵌入 自然语言处理 模式识别(心理学) 数学 语言学 哲学 几何学
作者
Xiao Wei,Yidian Lin
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-237323
摘要

Legal judgment prediction(LJP) has achieved remarkable results. However, existing methods still face problems such as difficulties in obtaining key feature words for charges, which impose limitations on the improvement of prediction results. To this end, we propose a legal judgment prediction model with legal feature Word subgraph Label-Embedding and Dual-knowledge Distillation(WLEDD). Compared with traditional methods, our method has two contributions: (1) To mitigate the impact of overly sparse tail class data and high similarity text representations, we capture the critical features related to the charges by fusing LDA and legal feature word subgraphs. Then we encode them as label information to obtain highly distinguished representations of legal documents. (2) To solve the problem of high difficulty in some subtasks in LJP, we perform subtask-oriented compression of models to construct a student model with lower complexity and higher accuracy through dual knowledge distillation. Moreover, we exploit the logical association between the subtasks to constrain the labels of articles by charge prediction results. It greatly reduces the difficulty of article prediction. Experimental results on four datasets show that our approach significantly outperforms the baseline models. Compared with the state-of-art method, the F1 value of WLEDD for charge prediction has increased by an average of 2.57% . For article prediction, the F1 value has increased by an average of 1.09% . In addition, we demonstrate its effectiveness through ablation experiments and analytical experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王亲近发布了新的文献求助10
1秒前
1秒前
成就的咖啡完成签到 ,获得积分10
1秒前
1秒前
chao完成签到,获得积分10
2秒前
华仔应助王肖宁采纳,获得10
3秒前
浮游应助汕头凯奇采纳,获得10
3秒前
机智的雁荷完成签到 ,获得积分10
3秒前
cooper发布了新的文献求助10
4秒前
John发布了新的文献求助10
4秒前
leiyang49完成签到,获得积分10
7秒前
今后应助Creshiki采纳,获得10
9秒前
叮叮叮发布了新的文献求助10
9秒前
9秒前
ls完成签到,获得积分10
9秒前
12秒前
充电宝应助科研小渣渣采纳,获得10
13秒前
Owen应助婷婷的大宝剑采纳,获得10
17秒前
shhoing应助乆乆乆乆采纳,获得10
17秒前
18秒前
直率的砖头完成签到,获得积分10
18秒前
阳光问安完成签到 ,获得积分10
20秒前
21秒前
21秒前
大模型应助茶米采纳,获得10
22秒前
22秒前
cooper完成签到,获得积分20
23秒前
24秒前
24秒前
26秒前
27秒前
27秒前
28秒前
zhangwj226完成签到,获得积分10
28秒前
29秒前
29秒前
量子星尘发布了新的文献求助10
30秒前
酷波er应助gzl采纳,获得10
30秒前
31秒前
Ava应助多情的忆之采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536782
求助须知:如何正确求助?哪些是违规求助? 4624440
关于积分的说明 14592026
捐赠科研通 4564913
什么是DOI,文献DOI怎么找? 2502020
邀请新用户注册赠送积分活动 1480820
关于科研通互助平台的介绍 1452003