WLEDD: Legal judgment prediction with legal feature word subgraph label-embedding and dual-knowledge distillation

对偶(语法数字) 特征(语言学) 词(群论) 计算机科学 嵌入 人工智能 文字嵌入 自然语言处理 模式识别(心理学) 数学 语言学 哲学 几何学
作者
Xiao Wei,Yidian Lin
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-237323
摘要

Legal judgment prediction(LJP) has achieved remarkable results. However, existing methods still face problems such as difficulties in obtaining key feature words for charges, which impose limitations on the improvement of prediction results. To this end, we propose a legal judgment prediction model with legal feature Word subgraph Label-Embedding and Dual-knowledge Distillation(WLEDD). Compared with traditional methods, our method has two contributions: (1) To mitigate the impact of overly sparse tail class data and high similarity text representations, we capture the critical features related to the charges by fusing LDA and legal feature word subgraphs. Then we encode them as label information to obtain highly distinguished representations of legal documents. (2) To solve the problem of high difficulty in some subtasks in LJP, we perform subtask-oriented compression of models to construct a student model with lower complexity and higher accuracy through dual knowledge distillation. Moreover, we exploit the logical association between the subtasks to constrain the labels of articles by charge prediction results. It greatly reduces the difficulty of article prediction. Experimental results on four datasets show that our approach significantly outperforms the baseline models. Compared with the state-of-art method, the F1 value of WLEDD for charge prediction has increased by an average of 2.57% . For article prediction, the F1 value has increased by an average of 1.09% . In addition, we demonstrate its effectiveness through ablation experiments and analytical experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
table发布了新的文献求助10
2秒前
打打应助纪诗筠采纳,获得10
2秒前
小不溜完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
CipherSage应助文静采纳,获得10
5秒前
5秒前
蔡雨岑发布了新的文献求助10
5秒前
6秒前
nh3完成签到,获得积分20
7秒前
NexusExplorer应助怕黑的樱采纳,获得10
7秒前
高高的冥茗完成签到,获得积分10
7秒前
星辰大海应助周易采纳,获得10
7秒前
科研通AI2S应助庾稀采纳,获得10
8秒前
唐古拉发布了新的文献求助10
9秒前
lucky发布了新的文献求助10
9秒前
10秒前
机智的映之完成签到,获得积分10
10秒前
惊蛰完成签到 ,获得积分10
11秒前
斯文败类应助1木木采纳,获得10
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
JamesPei应助蔡雨岑采纳,获得10
13秒前
wjrakej发布了新的文献求助10
13秒前
夏则完成签到,获得积分10
14秒前
15秒前
猪猪女孩一路硕博完成签到,获得积分10
15秒前
15秒前
无极微光应助LL采纳,获得20
15秒前
15秒前
文静发布了新的文献求助10
15秒前
动听夏波发布了新的文献求助30
15秒前
科研通AI6应助wyblobin采纳,获得10
15秒前
在水一方应助光亮靖琪采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4897294
求助须知:如何正确求助?哪些是违规求助? 4178485
关于积分的说明 12971563
捐赠科研通 3942126
什么是DOI,文献DOI怎么找? 2162467
邀请新用户注册赠送积分活动 1181014
关于科研通互助平台的介绍 1086585