Catalase functionalized ZnO and graphene oxide used as electrocatalyst for the selective detection of hydrogen peroxide

过氧化氢 电催化剂 石墨烯 过氧化氢酶 氧化物 化学 材料科学 化学工程 无机化学 纳米技术 电化学 氧化应激 生物化学 有机化学 电极 物理化学 工程类
作者
Swati Sharma,Utkarsh Jain,Warren Rosario,Varshika Singh,Vinita Hooda,Nidhi Chauhan
出处
期刊:Journal of Chemical Technology & Biotechnology [Wiley]
标识
DOI:10.1002/jctb.7644
摘要

Abstract BACKGROUND This study focuses on the fabrication of a biosensor for the electrocatalytic and selective hydrogen peroxide (H 2 O 2 ) recognition with bovine liver catalase (CAT) immobilized over a cysteine (c) modified zinc oxide nanoparticles/graphene oxide (c‐ZnO/GO) interface. The selectivity and sensitivity of the biosensor were augmented by the use of CAT and GO, respectively. The problem of CAT activity inhibition by GO was specifically solved by the incorporation of ZnO. Also, the cystine functionalization helped in better immobilization of CAT. RESULTS This unique approach was first validated with in silico computations that calculated the binding affinities to study the interactions between different components of the biosensor. The electrochemical studies confirmed the step‐by‐step modification of the sensor, where along with GO, c‐ZnO nanoparticles also showed excellent electro‐conductivity by fundamentally improving the peak currents towards H 2 O 2 . The proposed bio‐nano interface exhibited superb electrocatalytic performance and specific detection capability for H 2 O 2 across a broad linear range (0.1 to 40 μmol L −1 ), featuring a low detection limit (0.1 μmol L −1 ), as well as commendable reproducibility and storage durability. Furthermore, the biosensor yielded satisfactory outcomes for H 2 O 2 detection in milk samples. CONCLUSION Sensing performance of nano‐bio interfaces can be augmented by using the appropriate nano‐composites and their efficacy confirmed through computational techniques such as molecular docking. The biosensor can be further repurposed into a wearable device by integration with lab‐on‐a‐chip platforms. © 2024 Society of Chemical Industry (SCI).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
老肥发布了新的文献求助30
1秒前
1秒前
小小鱼完成签到 ,获得积分10
2秒前
想念发布了新的文献求助10
2秒前
2秒前
guoke完成签到,获得积分0
3秒前
杰杰小杰发布了新的文献求助60
3秒前
小十二完成签到,获得积分10
3秒前
3秒前
科研通AI5应助慧慧采纳,获得10
3秒前
冷酷跳跳糖完成签到,获得积分10
4秒前
ZYao65发布了新的文献求助10
4秒前
4秒前
田様应助muyingleng采纳,获得10
4秒前
phyllis完成签到,获得积分10
5秒前
5秒前
火星上的菲鹰应助阿九采纳,获得10
5秒前
1908679476发布了新的文献求助10
6秒前
6秒前
6秒前
李健的小迷弟应助HU采纳,获得10
7秒前
Nana发布了新的文献求助10
7秒前
9秒前
9秒前
风为裳完成签到,获得积分10
9秒前
跳跃凡桃发布了新的文献求助10
9秒前
Gloyxtg发布了新的文献求助10
9秒前
10秒前
10秒前
Mlwwq发布了新的文献求助10
10秒前
小张医生发布了新的文献求助10
10秒前
11秒前
科研通AI5应助甜甜采纳,获得10
11秒前
13秒前
忍冬完成签到,获得积分10
14秒前
tigger发布了新的文献求助10
14秒前
小杨完成签到,获得积分10
14秒前
大雷完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564154
求助须知:如何正确求助?哪些是违规求助? 3137367
关于积分的说明 9422052
捐赠科研通 2837751
什么是DOI,文献DOI怎么找? 1560082
邀请新用户注册赠送积分活动 729261
科研通“疑难数据库(出版商)”最低求助积分说明 717280