吸附
电泳剂
化学
杂原子
部分
离子液体
共价键
极性(国际关系)
化学极性
亲电取代
离子键合
化学工程
有机化学
无机化学
分子
离子
戒指(化学)
催化作用
生物化学
工程类
细胞
作者
Jie Fu,Jiaying Liu,Yue-Ru Zhou,Lei Zhang,Shuanglong Wang,Song Qin,Maohong Fan,Guo‐Hong Tao,Ling He
标识
DOI:10.1016/j.cej.2024.150913
摘要
The research on the adsorption and conversion of non-polar gases (carbon dioxide, hydrogen, iodine, etc.) has attracted global attention. Extensive work has revealed the intuitive impact of the heteroatom effect on the adsorption performance of covalent organic framework (COF) adsorbents for non-polar gases. However, more influencing factors must be studied to more precisely design and construct target-specific COF adsorbents. In this work, an underlying influencing factor, local polarity, is discovered, which is defined as the polarity of the functional moiety. Due to the substitution of strong electrophile, the electron cloud distribution of the COF framework is regulated, and the local polarity that better matches the adsorption of target electrophilic gas (iodine) has been observed. The local polarity of COF has been controlled through several strong electrophilic ionic liquids, dramatically improving adsorption performance. The saturated adsorption capacity increases from 1.5 to 5.2 g·g−1, and the adsorption kinetics index k80% value increases from 0.51 to 2.69 g·g−1·h−1. The insight would support precise chemical regulation of target-specific COF in energy and environment science.
科研通智能强力驱动
Strongly Powered by AbleSci AI