亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Medical image classification using self-supervised learning-based masked autoencoder

人工智能 计算机科学 可解释性 自编码 模式识别(心理学) 机器学习 深度学习 上下文图像分类 特征学习 特征(语言学) 遮罩(插图) 特征提取 图像(数学) 艺术 语言学 哲学 视觉艺术
作者
Zong Fan,Zhimin Wang,Ping Gong,Christine U. Lee,Shanshan Tang,Xiaohui Zhang,Yao Hao,Zhongwei Zhang,Pengfei Song,Shigao Chen,Li Hua
标识
DOI:10.1117/12.3006938
摘要

Accurate classification of medical images is crucial for disease diagnosis and treatment planning. Deep learning (DL) methods have gained increasing attention in this domain. However, DL-based classification methods encounter challenges due to the unique characteristics of medical image datasets, including limited amounts of labeled images and large image variations. Self-supervised learning (SSL) has emerged as a solution that learns informative representations from unlabeled data to alleviate the scarcity of labeled images and improve model performance. A recently proposed generative SSL method, masked autoencoder (MAE), has shown excellent capability in feature representation learning. The MAE model trained on unlabeled data can be easily tuned to improve the performance of various downstream classification models. In this paper, we performed a preliminary study to integrate MAE with the self-attention mechanism for tumor classification on breast ultrasound (BUS) data. Considering the speckle noise, image quality variations of BUS images, and varying tumor shapes and sizes, two revisions were adopted in using MAE for tumor classification. First, MAE's patch size and masking ratio were adjusted to avoid missing information embedded in small lesions on BUS images. Second, attention maps were extracted to improve the interpretability of the model's decision-making process. Experiments demonstrated the effectiveness and potential of the MAE-based classification model on small labeled datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重的泽洋完成签到 ,获得积分10
17秒前
爆米花应助动听葵阴采纳,获得10
27秒前
36秒前
37秒前
动听葵阴发布了新的文献求助10
42秒前
ieeat完成签到,获得积分10
1分钟前
1分钟前
紫色奶萨发布了新的文献求助10
1分钟前
huenguyenvan完成签到,获得积分10
1分钟前
GingerF应助淡然的妙芙采纳,获得50
1分钟前
慕青应助阳光小馒头采纳,获得10
1分钟前
2分钟前
远行客HB完成签到,获得积分10
2分钟前
李心雨发布了新的文献求助20
2分钟前
2分钟前
远行客HB发布了新的文献求助10
2分钟前
CodeCraft应助村上春树的摩的采纳,获得100
2分钟前
浮游应助李心雨采纳,获得10
2分钟前
Shandongdaxiu完成签到 ,获得积分10
2分钟前
2分钟前
英姑应助断罪残影采纳,获得10
2分钟前
3分钟前
FairyLeaf发布了新的文献求助20
3分钟前
3分钟前
3分钟前
动听葵阴发布了新的文献求助10
3分钟前
丘比特应助热情的安彤采纳,获得10
4分钟前
4分钟前
Abdurrahman完成签到,获得积分10
4分钟前
oscar完成签到,获得积分10
4分钟前
dkswy完成签到,获得积分10
4分钟前
4分钟前
科研通AI6应助泽灵采纳,获得10
4分钟前
ykssss发布了新的文献求助10
4分钟前
ykssss完成签到,获得积分10
4分钟前
5分钟前
5分钟前
宝贝丫头完成签到 ,获得积分10
5分钟前
Stata@R发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5198616
求助须知:如何正确求助?哪些是违规求助? 4379557
关于积分的说明 13638287
捐赠科研通 4235728
什么是DOI,文献DOI怎么找? 2323520
邀请新用户注册赠送积分活动 1321638
关于科研通互助平台的介绍 1272661