Medical image classification using self-supervised learning-based masked autoencoder

人工智能 计算机科学 可解释性 自编码 模式识别(心理学) 机器学习 深度学习 上下文图像分类 特征学习 特征(语言学) 遮罩(插图) 特征提取 图像(数学) 艺术 语言学 哲学 视觉艺术
作者
Zong Fan,Zhimin Wang,Ping Gong,Christine U. Lee,Shanshan Tang,Xiaohui Zhang,Yao Hao,Zhongwei Zhang,Pengfei Song,Shigao Chen,Li Hua
标识
DOI:10.1117/12.3006938
摘要

Accurate classification of medical images is crucial for disease diagnosis and treatment planning. Deep learning (DL) methods have gained increasing attention in this domain. However, DL-based classification methods encounter challenges due to the unique characteristics of medical image datasets, including limited amounts of labeled images and large image variations. Self-supervised learning (SSL) has emerged as a solution that learns informative representations from unlabeled data to alleviate the scarcity of labeled images and improve model performance. A recently proposed generative SSL method, masked autoencoder (MAE), has shown excellent capability in feature representation learning. The MAE model trained on unlabeled data can be easily tuned to improve the performance of various downstream classification models. In this paper, we performed a preliminary study to integrate MAE with the self-attention mechanism for tumor classification on breast ultrasound (BUS) data. Considering the speckle noise, image quality variations of BUS images, and varying tumor shapes and sizes, two revisions were adopted in using MAE for tumor classification. First, MAE's patch size and masking ratio were adjusted to avoid missing information embedded in small lesions on BUS images. Second, attention maps were extracted to improve the interpretability of the model's decision-making process. Experiments demonstrated the effectiveness and potential of the MAE-based classification model on small labeled datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
椿人发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
好学发布了新的文献求助10
1秒前
2秒前
浮游应助白子双采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
呆萌的紫霜完成签到 ,获得积分10
3秒前
4秒前
QQ发布了新的文献求助10
4秒前
4秒前
应寒年发布了新的文献求助10
5秒前
onlyan发布了新的文献求助10
5秒前
5秒前
英姑应助黄油可颂采纳,获得10
6秒前
8秒前
香蕉觅云应助bronny采纳,获得10
9秒前
9秒前
9秒前
我就是我完成签到,获得积分10
10秒前
丘比特应助七页禾采纳,获得10
11秒前
丘比特应助壮观梦凡采纳,获得30
11秒前
onlyan完成签到,获得积分10
12秒前
麦乐迪完成签到 ,获得积分10
13秒前
Dracoon发布了新的文献求助10
14秒前
14秒前
HH发布了新的文献求助10
14秒前
小马甲应助小方采纳,获得10
15秒前
spring完成签到 ,获得积分10
16秒前
cc完成签到,获得积分10
16秒前
huijuan完成签到,获得积分10
17秒前
20秒前
Mattie完成签到,获得积分10
21秒前
22秒前
XXXXX完成签到 ,获得积分10
23秒前
meng完成签到,获得积分10
23秒前
海洋球完成签到,获得积分10
24秒前
认真的艳发布了新的文献求助10
25秒前
科研通AI2S应助HH采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425524
求助须知:如何正确求助?哪些是违规求助? 4539563
关于积分的说明 14168635
捐赠科研通 4457118
什么是DOI,文献DOI怎么找? 2444431
邀请新用户注册赠送积分活动 1435362
关于科研通互助平台的介绍 1412800