已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Medical image classification using self-supervised learning-based masked autoencoder

人工智能 计算机科学 可解释性 自编码 模式识别(心理学) 机器学习 深度学习 上下文图像分类 特征学习 特征(语言学) 遮罩(插图) 特征提取 图像(数学) 艺术 语言学 哲学 视觉艺术
作者
Zong Fan,Zhimin Wang,Ping Gong,Christine U. Lee,Shanshan Tang,Xiaohui Zhang,Yao Hao,Zhongwei Zhang,Pengfei Song,Shigao Chen,Li Hua
标识
DOI:10.1117/12.3006938
摘要

Accurate classification of medical images is crucial for disease diagnosis and treatment planning. Deep learning (DL) methods have gained increasing attention in this domain. However, DL-based classification methods encounter challenges due to the unique characteristics of medical image datasets, including limited amounts of labeled images and large image variations. Self-supervised learning (SSL) has emerged as a solution that learns informative representations from unlabeled data to alleviate the scarcity of labeled images and improve model performance. A recently proposed generative SSL method, masked autoencoder (MAE), has shown excellent capability in feature representation learning. The MAE model trained on unlabeled data can be easily tuned to improve the performance of various downstream classification models. In this paper, we performed a preliminary study to integrate MAE with the self-attention mechanism for tumor classification on breast ultrasound (BUS) data. Considering the speckle noise, image quality variations of BUS images, and varying tumor shapes and sizes, two revisions were adopted in using MAE for tumor classification. First, MAE's patch size and masking ratio were adjusted to avoid missing information embedded in small lesions on BUS images. Second, attention maps were extracted to improve the interpretability of the model's decision-making process. Experiments demonstrated the effectiveness and potential of the MAE-based classification model on small labeled datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宗铁强完成签到,获得积分20
1秒前
2秒前
Lucas应助简单雨柏采纳,获得10
5秒前
6秒前
7秒前
7秒前
9秒前
Nian发布了新的文献求助10
10秒前
YY发布了新的文献求助10
11秒前
12秒前
王磊完成签到 ,获得积分10
15秒前
15秒前
yi只熊完成签到,获得积分20
16秒前
简单雨柏完成签到,获得积分10
17秒前
yi只熊发布了新的文献求助20
20秒前
Kylin完成签到,获得积分10
22秒前
24秒前
25秒前
25秒前
赘婿应助yi只熊采纳,获得20
28秒前
Alex应助科研通管家采纳,获得20
29秒前
gkads应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
大模型应助科研通管家采纳,获得10
29秒前
火火发布了新的文献求助10
29秒前
Trinka完成签到,获得积分10
31秒前
JamesPei应助zhuxiaoyue采纳,获得10
32秒前
顺心的笑珊完成签到,获得积分10
35秒前
羞涩的傲菡完成签到,获得积分10
39秒前
41秒前
脑洞疼应助顺心的笑珊采纳,获得10
42秒前
46秒前
冷艳的语雪完成签到 ,获得积分10
47秒前
Amelie完成签到 ,获得积分10
48秒前
songshuyu完成签到,获得积分10
50秒前
沧海静音发布了新的文献求助10
50秒前
51秒前
浮游应助Hector采纳,获得10
55秒前
ZB完成签到,获得积分10
56秒前
科研通AI6应助尊敬的便当采纳,获得10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525110
关于积分的说明 14101161
捐赠科研通 4438888
什么是DOI,文献DOI怎么找? 2436526
邀请新用户注册赠送积分活动 1428500
关于科研通互助平台的介绍 1406528