Medical image classification using self-supervised learning-based masked autoencoder

人工智能 计算机科学 可解释性 自编码 模式识别(心理学) 机器学习 深度学习 上下文图像分类 特征学习 特征(语言学) 遮罩(插图) 特征提取 图像(数学) 艺术 语言学 哲学 视觉艺术
作者
Zong Fan,Zhimin Wang,Ping Gong,Christine U. Lee,Shanshan Tang,Xiaohui Zhang,Yao Hao,Zhongwei Zhang,Pengfei Song,Shigao Chen,Li Hua
标识
DOI:10.1117/12.3006938
摘要

Accurate classification of medical images is crucial for disease diagnosis and treatment planning. Deep learning (DL) methods have gained increasing attention in this domain. However, DL-based classification methods encounter challenges due to the unique characteristics of medical image datasets, including limited amounts of labeled images and large image variations. Self-supervised learning (SSL) has emerged as a solution that learns informative representations from unlabeled data to alleviate the scarcity of labeled images and improve model performance. A recently proposed generative SSL method, masked autoencoder (MAE), has shown excellent capability in feature representation learning. The MAE model trained on unlabeled data can be easily tuned to improve the performance of various downstream classification models. In this paper, we performed a preliminary study to integrate MAE with the self-attention mechanism for tumor classification on breast ultrasound (BUS) data. Considering the speckle noise, image quality variations of BUS images, and varying tumor shapes and sizes, two revisions were adopted in using MAE for tumor classification. First, MAE's patch size and masking ratio were adjusted to avoid missing information embedded in small lesions on BUS images. Second, attention maps were extracted to improve the interpretability of the model's decision-making process. Experiments demonstrated the effectiveness and potential of the MAE-based classification model on small labeled datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上心完成签到,获得积分10
刚刚
halabouqii发布了新的文献求助10
刚刚
1秒前
ccm应助章鱼哥想毕业采纳,获得10
1秒前
3秒前
oreo发布了新的文献求助10
3秒前
华仔应助zzzy采纳,获得10
4秒前
帅比4发布了新的文献求助10
5秒前
5秒前
马哈哈完成签到 ,获得积分10
5秒前
SciGPT应助XX采纳,获得10
5秒前
馥芮白完成签到,获得积分10
5秒前
6秒前
赘婿应助Jackylee采纳,获得10
6秒前
小虾米发布了新的文献求助10
7秒前
7秒前
神勇健柏发布了新的文献求助10
8秒前
8秒前
Yu2507完成签到 ,获得积分10
9秒前
kun应助高兴123采纳,获得10
9秒前
赘婿应助认真努力发SCI采纳,获得10
10秒前
10秒前
10秒前
10秒前
JackWang618完成签到,获得积分10
11秒前
11秒前
彭于晏应助帅比4采纳,获得10
12秒前
12秒前
会跳投的绿丸完成签到,获得积分20
13秒前
13秒前
gao完成签到,获得积分10
14秒前
怡然凝云发布了新的文献求助10
14秒前
14秒前
14秒前
小青椒应助Lee采纳,获得30
14秒前
球球发布了新的文献求助10
15秒前
机灵的靖琪完成签到,获得积分20
16秒前
Alas_gulf完成签到,获得积分10
16秒前
ZN发布了新的文献求助10
16秒前
16秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572