亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Medical image classification using self-supervised learning-based masked autoencoder

人工智能 计算机科学 可解释性 自编码 模式识别(心理学) 机器学习 深度学习 上下文图像分类 特征学习 特征(语言学) 遮罩(插图) 特征提取 图像(数学) 艺术 语言学 哲学 视觉艺术
作者
Zong Fan,Zhimin Wang,Ping Gong,Christine U. Lee,Shanshan Tang,Xiaohui Zhang,Yao Hao,Zhongwei Zhang,Pengfei Song,Shigao Chen,Li Hua
标识
DOI:10.1117/12.3006938
摘要

Accurate classification of medical images is crucial for disease diagnosis and treatment planning. Deep learning (DL) methods have gained increasing attention in this domain. However, DL-based classification methods encounter challenges due to the unique characteristics of medical image datasets, including limited amounts of labeled images and large image variations. Self-supervised learning (SSL) has emerged as a solution that learns informative representations from unlabeled data to alleviate the scarcity of labeled images and improve model performance. A recently proposed generative SSL method, masked autoencoder (MAE), has shown excellent capability in feature representation learning. The MAE model trained on unlabeled data can be easily tuned to improve the performance of various downstream classification models. In this paper, we performed a preliminary study to integrate MAE with the self-attention mechanism for tumor classification on breast ultrasound (BUS) data. Considering the speckle noise, image quality variations of BUS images, and varying tumor shapes and sizes, two revisions were adopted in using MAE for tumor classification. First, MAE's patch size and masking ratio were adjusted to avoid missing information embedded in small lesions on BUS images. Second, attention maps were extracted to improve the interpretability of the model's decision-making process. Experiments demonstrated the effectiveness and potential of the MAE-based classification model on small labeled datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助树洞采纳,获得10
10秒前
18秒前
21秒前
wuyan发布了新的文献求助10
24秒前
wuyan完成签到,获得积分10
38秒前
39秒前
123发布了新的文献求助10
46秒前
刘刘pf完成签到,获得积分10
48秒前
53秒前
1分钟前
1分钟前
Criminology34应助树洞采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
小王好饿完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
小巧醉冬发布了新的文献求助10
2分钟前
orixero应助小巧醉冬采纳,获得10
2分钟前
2分钟前
freq发布了新的文献求助10
2分钟前
2分钟前
阿俊完成签到 ,获得积分10
2分钟前
彩虹儿应助iris采纳,获得10
2分钟前
万能图书馆应助iris采纳,获得10
2分钟前
壮观若南发布了新的文献求助10
2分钟前
Wang_JN完成签到 ,获得积分10
2分钟前
3分钟前
Criminology34应助树洞采纳,获得10
3分钟前
科研通AI6应助Puan采纳,获得10
3分钟前
壮观若南完成签到,获得积分10
3分钟前
胡杨树2006完成签到,获得积分10
3分钟前
微卫星不稳定完成签到 ,获得积分0
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Puan发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926283
求助须知:如何正确求助?哪些是违规求助? 4196180
关于积分的说明 13031994
捐赠科研通 3968126
什么是DOI,文献DOI怎么找? 2174848
邀请新用户注册赠送积分活动 1192015
关于科研通互助平台的介绍 1102150