Medical image classification using self-supervised learning-based masked autoencoder

人工智能 计算机科学 可解释性 自编码 模式识别(心理学) 机器学习 深度学习 上下文图像分类 特征学习 特征(语言学) 遮罩(插图) 特征提取 图像(数学) 艺术 语言学 哲学 视觉艺术
作者
Zong Fan,Zhimin Wang,Ping Gong,Christine U. Lee,Shanshan Tang,Xiaohui Zhang,Yao Hao,Zhongwei Zhang,Pengfei Song,Shigao Chen,Li Hua
标识
DOI:10.1117/12.3006938
摘要

Accurate classification of medical images is crucial for disease diagnosis and treatment planning. Deep learning (DL) methods have gained increasing attention in this domain. However, DL-based classification methods encounter challenges due to the unique characteristics of medical image datasets, including limited amounts of labeled images and large image variations. Self-supervised learning (SSL) has emerged as a solution that learns informative representations from unlabeled data to alleviate the scarcity of labeled images and improve model performance. A recently proposed generative SSL method, masked autoencoder (MAE), has shown excellent capability in feature representation learning. The MAE model trained on unlabeled data can be easily tuned to improve the performance of various downstream classification models. In this paper, we performed a preliminary study to integrate MAE with the self-attention mechanism for tumor classification on breast ultrasound (BUS) data. Considering the speckle noise, image quality variations of BUS images, and varying tumor shapes and sizes, two revisions were adopted in using MAE for tumor classification. First, MAE's patch size and masking ratio were adjusted to avoid missing information embedded in small lesions on BUS images. Second, attention maps were extracted to improve the interpretability of the model's decision-making process. Experiments demonstrated the effectiveness and potential of the MAE-based classification model on small labeled datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨佳酿发布了新的文献求助10
2秒前
张颖完成签到,获得积分10
2秒前
桐桐应助吱吱熊sama采纳,获得10
2秒前
3秒前
何y完成签到 ,获得积分10
3秒前
3秒前
英俊的铭应助爱丽丝敏采纳,获得10
4秒前
5秒前
呆萌魏完成签到 ,获得积分10
6秒前
卿落完成签到,获得积分10
6秒前
闫123完成签到,获得积分10
7秒前
cy发布了新的文献求助40
8秒前
小柒多多发布了新的文献求助10
9秒前
9秒前
mzmz给mzmz的求助进行了留言
10秒前
zzuli_liu完成签到,获得积分10
10秒前
烟花应助Luna采纳,获得10
11秒前
义气衬衫完成签到,获得积分10
12秒前
鳗鱼不尤完成签到,获得积分10
12秒前
研友_VZG7GZ应助浮浮世世采纳,获得10
12秒前
cai完成签到,获得积分10
13秒前
美好斓发布了新的文献求助10
13秒前
啦啦啦完成签到,获得积分10
15秒前
星辰大海应助lian采纳,获得10
15秒前
Lio发布了新的文献求助10
16秒前
李爱国应助黄逸然采纳,获得10
17秒前
18秒前
YYY完成签到 ,获得积分10
20秒前
wanci应助波安班采纳,获得10
20秒前
21秒前
21秒前
21秒前
kk完成签到,获得积分10
22秒前
冯冯完成签到 ,获得积分10
22秒前
樊焕焕发布了新的文献求助10
22秒前
zoe完成签到 ,获得积分10
22秒前
23秒前
恐怖稽器人完成签到,获得积分10
23秒前
25秒前
Chase完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295400
求助须知:如何正确求助?哪些是违规求助? 4444944
关于积分的说明 13834942
捐赠科研通 4329343
什么是DOI,文献DOI怎么找? 2376614
邀请新用户注册赠送积分活动 1371888
关于科研通互助平台的介绍 1337169