Medical image classification using self-supervised learning-based masked autoencoder

人工智能 计算机科学 可解释性 自编码 模式识别(心理学) 机器学习 深度学习 上下文图像分类 特征学习 特征(语言学) 遮罩(插图) 特征提取 图像(数学) 艺术 语言学 哲学 视觉艺术
作者
Zong Fan,Zhimin Wang,Ping Gong,Christine U. Lee,Shanshan Tang,Xiaohui Zhang,Yao Hao,Zhongwei Zhang,Pengfei Song,Shigao Chen,Li Hua
标识
DOI:10.1117/12.3006938
摘要

Accurate classification of medical images is crucial for disease diagnosis and treatment planning. Deep learning (DL) methods have gained increasing attention in this domain. However, DL-based classification methods encounter challenges due to the unique characteristics of medical image datasets, including limited amounts of labeled images and large image variations. Self-supervised learning (SSL) has emerged as a solution that learns informative representations from unlabeled data to alleviate the scarcity of labeled images and improve model performance. A recently proposed generative SSL method, masked autoencoder (MAE), has shown excellent capability in feature representation learning. The MAE model trained on unlabeled data can be easily tuned to improve the performance of various downstream classification models. In this paper, we performed a preliminary study to integrate MAE with the self-attention mechanism for tumor classification on breast ultrasound (BUS) data. Considering the speckle noise, image quality variations of BUS images, and varying tumor shapes and sizes, two revisions were adopted in using MAE for tumor classification. First, MAE's patch size and masking ratio were adjusted to avoid missing information embedded in small lesions on BUS images. Second, attention maps were extracted to improve the interpretability of the model's decision-making process. Experiments demonstrated the effectiveness and potential of the MAE-based classification model on small labeled datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨芝麻完成签到,获得积分10
刚刚
小伍完成签到,获得积分10
1秒前
1秒前
1秒前
炸炸桃完成签到,获得积分10
1秒前
gao完成签到,获得积分10
2秒前
lxb完成签到,获得积分10
2秒前
2秒前
2秒前
夹谷蕈完成签到 ,获得积分10
2秒前
俭朴的老黑完成签到,获得积分10
3秒前
3秒前
禾沐发布了新的文献求助10
3秒前
科研小锄头完成签到,获得积分10
4秒前
思源应助poppy采纳,获得10
4秒前
有点小卑鄙完成签到,获得积分10
4秒前
研友_VZG7GZ应助LTB采纳,获得10
4秒前
3242晶发布了新的文献求助10
5秒前
shelly完成签到,获得积分10
5秒前
金金金完成签到,获得积分10
6秒前
6秒前
6秒前
五五我发布了新的文献求助10
7秒前
小桑桑完成签到,获得积分10
7秒前
8秒前
LIUDAN发布了新的文献求助10
8秒前
8秒前
8秒前
Teirow完成签到,获得积分10
8秒前
8秒前
自由的山柏完成签到,获得积分10
8秒前
二橦完成签到 ,获得积分10
8秒前
天马行空完成签到,获得积分10
9秒前
豆子发布了新的文献求助10
9秒前
9秒前
9秒前
伶俐雅柏完成签到,获得积分10
9秒前
9秒前
9秒前
优优的iu完成签到,获得积分10
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337533
求助须知:如何正确求助?哪些是违规求助? 4474745
关于积分的说明 13925710
捐赠科研通 4369749
什么是DOI,文献DOI怎么找? 2400934
邀请新用户注册赠送积分活动 1394041
关于科研通互助平台的介绍 1365885