Medical image classification using self-supervised learning-based masked autoencoder

人工智能 计算机科学 可解释性 自编码 模式识别(心理学) 机器学习 深度学习 上下文图像分类 特征学习 特征(语言学) 遮罩(插图) 特征提取 图像(数学) 艺术 语言学 哲学 视觉艺术
作者
Zong Fan,Zhimin Wang,Ping Gong,Christine U. Lee,Shanshan Tang,Xiaohui Zhang,Yao Hao,Zhongwei Zhang,Pengfei Song,Shigao Chen,Li Hua
标识
DOI:10.1117/12.3006938
摘要

Accurate classification of medical images is crucial for disease diagnosis and treatment planning. Deep learning (DL) methods have gained increasing attention in this domain. However, DL-based classification methods encounter challenges due to the unique characteristics of medical image datasets, including limited amounts of labeled images and large image variations. Self-supervised learning (SSL) has emerged as a solution that learns informative representations from unlabeled data to alleviate the scarcity of labeled images and improve model performance. A recently proposed generative SSL method, masked autoencoder (MAE), has shown excellent capability in feature representation learning. The MAE model trained on unlabeled data can be easily tuned to improve the performance of various downstream classification models. In this paper, we performed a preliminary study to integrate MAE with the self-attention mechanism for tumor classification on breast ultrasound (BUS) data. Considering the speckle noise, image quality variations of BUS images, and varying tumor shapes and sizes, two revisions were adopted in using MAE for tumor classification. First, MAE's patch size and masking ratio were adjusted to avoid missing information embedded in small lesions on BUS images. Second, attention maps were extracted to improve the interpretability of the model's decision-making process. Experiments demonstrated the effectiveness and potential of the MAE-based classification model on small labeled datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大大怪将军完成签到,获得积分20
刚刚
1秒前
充电宝应助黎黎采纳,获得10
1秒前
1秒前
王博士完成签到,获得积分10
1秒前
421111发布了新的文献求助10
2秒前
活力友容完成签到,获得积分10
2秒前
2秒前
2秒前
小蒋完成签到,获得积分20
2秒前
2秒前
3秒前
朱先生完成签到,获得积分10
3秒前
汤汤发布了新的文献求助10
3秒前
二二的叶之梦关注了科研通微信公众号
5秒前
科研通AI6应助河北采纳,获得10
5秒前
Yy发布了新的文献求助10
5秒前
5秒前
5秒前
FashionBoy应助kakukaeen采纳,获得10
6秒前
明亮洋葱完成签到,获得积分10
6秒前
地球完成签到,获得积分10
6秒前
6秒前
6秒前
古风欧发布了新的文献求助10
6秒前
萌小萌发布了新的文献求助10
6秒前
7秒前
liangliang发布了新的文献求助10
7秒前
啦啦啦123发布了新的文献求助10
7秒前
8秒前
bluelala完成签到,获得积分10
8秒前
9秒前
大意的白翠完成签到,获得积分10
9秒前
9秒前
Mic应助科研通管家采纳,获得10
9秒前
活力友容发布了新的文献求助10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5319859
求助须知:如何正确求助?哪些是违规求助? 4461827
关于积分的说明 13884803
捐赠科研通 4352481
什么是DOI,文献DOI怎么找? 2390628
邀请新用户注册赠送积分活动 1384354
关于科研通互助平台的介绍 1354131