Medical image classification using self-supervised learning-based masked autoencoder

人工智能 计算机科学 可解释性 自编码 模式识别(心理学) 机器学习 深度学习 上下文图像分类 特征学习 特征(语言学) 遮罩(插图) 特征提取 图像(数学) 艺术 语言学 哲学 视觉艺术
作者
Zong Fan,Zhimin Wang,Ping Gong,Christine U. Lee,Shanshan Tang,Xiaohui Zhang,Yao Hao,Zhongwei Zhang,Pengfei Song,Shigao Chen,Li Hua
标识
DOI:10.1117/12.3006938
摘要

Accurate classification of medical images is crucial for disease diagnosis and treatment planning. Deep learning (DL) methods have gained increasing attention in this domain. However, DL-based classification methods encounter challenges due to the unique characteristics of medical image datasets, including limited amounts of labeled images and large image variations. Self-supervised learning (SSL) has emerged as a solution that learns informative representations from unlabeled data to alleviate the scarcity of labeled images and improve model performance. A recently proposed generative SSL method, masked autoencoder (MAE), has shown excellent capability in feature representation learning. The MAE model trained on unlabeled data can be easily tuned to improve the performance of various downstream classification models. In this paper, we performed a preliminary study to integrate MAE with the self-attention mechanism for tumor classification on breast ultrasound (BUS) data. Considering the speckle noise, image quality variations of BUS images, and varying tumor shapes and sizes, two revisions were adopted in using MAE for tumor classification. First, MAE's patch size and masking ratio were adjusted to avoid missing information embedded in small lesions on BUS images. Second, attention maps were extracted to improve the interpretability of the model's decision-making process. Experiments demonstrated the effectiveness and potential of the MAE-based classification model on small labeled datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
涵涵姐发布了新的文献求助10
1秒前
1秒前
乐乐应助de铭采纳,获得10
2秒前
2秒前
Python_Liu完成签到 ,获得积分10
2秒前
大模型应助Dora采纳,获得10
2秒前
2秒前
所所应助方圆几里采纳,获得10
2秒前
希望天下0贩的0应助Nervous采纳,获得10
2秒前
3秒前
科目三应助尊敬冰姬采纳,获得10
4秒前
晴天发布了新的文献求助10
5秒前
yangYR完成签到,获得积分10
5秒前
yangy115发布了新的文献求助10
5秒前
6秒前
6秒前
领导范儿应助ZZ采纳,获得10
7秒前
7秒前
任婷发布了新的文献求助10
8秒前
虎皮仓鼠发布了新的文献求助30
9秒前
10秒前
张兰兰完成签到,获得积分10
12秒前
打打应助铁铁采纳,获得10
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
14秒前
15秒前
guoyunlong发布了新的文献求助10
16秒前
肖恩发布了新的文献求助10
17秒前
方圆几里发布了新的文献求助10
17秒前
江月年发布了新的文献求助10
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
lfzw完成签到,获得积分10
18秒前
Jasper应助马明旋采纳,获得10
18秒前
Orange应助任婷采纳,获得10
18秒前
内向尔安发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430298
求助须知:如何正确求助?哪些是违规求助? 4543501
关于积分的说明 14187546
捐赠科研通 4461646
什么是DOI,文献DOI怎么找? 2446255
邀请新用户注册赠送积分活动 1437582
关于科研通互助平台的介绍 1414406