An improved immersed boundary method with local flow pattern reconstruction and its validation

燃烧室 喷油器 流量(数学) 圆柱 机械工程 网格 边界(拓扑) 浸入边界法 湍流 机械 物理 边值问题 涡轮机 燃烧 几何学 数学分析 工程类 数学 化学 有机化学 量子力学
作者
Wang Yudong,Wang Fang,Zhou Jiawei,Jin Chuan Jie
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (4) 被引量:1
标识
DOI:10.1063/5.0195598
摘要

This study introduces an immersed boundary (IB) method based on coefficient array transformations of discrete equations for local cells and local flow pattern reconstruction, for the simulation of turbulent flow and combustion chemistry inside combustors with complex structure. This IB method is combined with a geometric scanning algorithm that traverses each fluid grid point in the vicinity of the wall, and based on the exact wall positions and normal vectors obtained from the scanning, the coefficient matrices of the individual grid points and their discrete forms of the governing equations are transformed, and the boundary conditions are added implicitly and exactly. The effectiveness of the method is validated through simulations of a cylinder, a gas turbine model combustor [Meier et al., “Spray and flame structure of a generic injector at aeroengine conditions,” in Proceedings of the ASME 2011 Turbo Expo: Power for Land, Sea, and Air (American Society of Mechanical Engineers, 2011), pp. 61–72 and Freitag et al., “Measurement of initial conditions of a kerosene spray from a generic aeroengine injector at elevated pressure,” Atomization Sprays 21, 521 (2011)], and a specific aero-engine combustor, demonstrating precision comparable to traditional body-fitted mesh approaches, especially for complex combustor structures. The simulation demonstrates that the IB method achieves accuracy comparable to a fitted grid when it provides boundary information of similar quality and detail for control equations. The locally reconstructed IB method introduced in this paper successfully delivers high-precision boundary conditions, making it valuable for practical engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daladala完成签到 ,获得积分10
1秒前
2秒前
儿学化学打断腿完成签到,获得积分10
3秒前
xch发布了新的文献求助10
4秒前
能干的新筠完成签到,获得积分10
4秒前
lc发布了新的文献求助10
4秒前
小马甲应助DXY采纳,获得10
4秒前
6秒前
XU发布了新的文献求助10
6秒前
7秒前
zanilia应助美丽钢铁侠采纳,获得10
8秒前
我是老大应助fyy采纳,获得10
8秒前
research_cow完成签到,获得积分20
10秒前
JKWu完成签到,获得积分10
10秒前
www完成签到 ,获得积分10
10秒前
小萝卜发布了新的文献求助10
10秒前
所所应助xh采纳,获得10
11秒前
清平道人应助俗人采纳,获得10
11秒前
12秒前
13秒前
良辰应助木头采纳,获得10
14秒前
14秒前
Akim应助花开采纳,获得30
14秒前
善学以致用应助精明冷风采纳,获得10
14秒前
李健应助nannan采纳,获得10
16秒前
CodeCraft应助li采纳,获得10
17秒前
Akim应助ZYH采纳,获得10
19秒前
sissiarno应助jingyu采纳,获得50
20秒前
Hello应助重要半兰采纳,获得10
20秒前
21秒前
ddm发布了新的文献求助10
21秒前
万能图书馆应助yyymmma采纳,获得10
23秒前
ferrycake应助年轻可愁采纳,获得20
25秒前
25秒前
敬老院N号应助JKWu采纳,获得30
26秒前
闾丘惜萱完成签到,获得积分10
27秒前
Anna Jenna发布了新的文献求助10
27秒前
隐形曼青应助日行三万里采纳,获得10
28秒前
科研通AI2S应助楪祈爱着集采纳,获得10
29秒前
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306986
求助须知:如何正确求助?哪些是违规求助? 2940825
关于积分的说明 8498822
捐赠科研通 2614965
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663451
邀请新用户注册赠送积分活动 648304