An improved immersed boundary method with local flow pattern reconstruction and its validation

燃烧室 喷油器 流量(数学) 圆柱 机械工程 网格 边界(拓扑) 浸入边界法 湍流 机械 物理 边值问题 涡轮机 燃烧 几何学 数学分析 工程类 数学 化学 有机化学 量子力学
作者
Wang Yudong,Wang Fang,Zhou Jiawei,Jin Chuan Jie
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (4) 被引量:2
标识
DOI:10.1063/5.0195598
摘要

This study introduces an immersed boundary (IB) method based on coefficient array transformations of discrete equations for local cells and local flow pattern reconstruction, for the simulation of turbulent flow and combustion chemistry inside combustors with complex structure. This IB method is combined with a geometric scanning algorithm that traverses each fluid grid point in the vicinity of the wall, and based on the exact wall positions and normal vectors obtained from the scanning, the coefficient matrices of the individual grid points and their discrete forms of the governing equations are transformed, and the boundary conditions are added implicitly and exactly. The effectiveness of the method is validated through simulations of a cylinder, a gas turbine model combustor [Meier et al., “Spray and flame structure of a generic injector at aeroengine conditions,” in Proceedings of the ASME 2011 Turbo Expo: Power for Land, Sea, and Air (American Society of Mechanical Engineers, 2011), pp. 61–72 and Freitag et al., “Measurement of initial conditions of a kerosene spray from a generic aeroengine injector at elevated pressure,” Atomization Sprays 21, 521 (2011)], and a specific aero-engine combustor, demonstrating precision comparable to traditional body-fitted mesh approaches, especially for complex combustor structures. The simulation demonstrates that the IB method achieves accuracy comparable to a fitted grid when it provides boundary information of similar quality and detail for control equations. The locally reconstructed IB method introduced in this paper successfully delivers high-precision boundary conditions, making it valuable for practical engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KInn完成签到,获得积分10
刚刚
思源应助lsy采纳,获得10
1秒前
卷aaaa发布了新的文献求助10
1秒前
人123456完成签到,获得积分10
1秒前
1秒前
3秒前
雪白以冬完成签到 ,获得积分10
3秒前
Stride完成签到 ,获得积分10
4秒前
4秒前
zzy发布了新的文献求助10
4秒前
5秒前
__发布了新的文献求助10
7秒前
999完成签到,获得积分10
7秒前
7秒前
科研小趴菜完成签到,获得积分10
7秒前
wisher完成签到,获得积分10
7秒前
雷大帅完成签到,获得积分10
7秒前
9秒前
9秒前
思源应助筱筱采纳,获得10
9秒前
10秒前
7444发布了新的文献求助10
10秒前
岁岁菌完成签到,获得积分10
11秒前
鱼仔发布了新的文献求助10
11秒前
ned发布了新的文献求助10
11秒前
寜1完成签到,获得积分10
11秒前
12秒前
向南发布了新的文献求助10
13秒前
小太阳完成签到,获得积分10
14秒前
拼搏的无颜完成签到,获得积分10
14秒前
科研通AI5应助热心的映冬采纳,获得10
14秒前
16秒前
orixero应助弥弥采纳,获得10
17秒前
18秒前
zfczfc发布了新的文献求助10
18秒前
缥缈冰珍发布了新的文献求助10
19秒前
慕青应助mingjie采纳,获得30
20秒前
大个应助lvjiahe采纳,获得10
21秒前
喻亦寒发布了新的文献求助10
22秒前
彭于晏应助蜜糖小桃叽采纳,获得10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131510
求助须知:如何正确求助?哪些是违规求助? 4333301
关于积分的说明 13500077
捐赠科研通 4170192
什么是DOI,文献DOI怎么找? 2286127
邀请新用户注册赠送积分活动 1287084
关于科研通互助平台的介绍 1228076