Improvement of disastrous extreme precipitation forecasting in North China by Pangu-weather AI-driven regional WRF model

天气研究与预报模式 气候学 降水 气象学 环境科学 中国 热带气旋预报模式 天气预报 地理 地质学 考古
作者
Hongxiong Xu,Yang Zhao,Dajun Zhao,Yihong Duan,Xiangde Xu
出处
期刊:Environmental Research Letters [IOP Publishing]
卷期号:19 (5): 054051-054051 被引量:6
标识
DOI:10.1088/1748-9326/ad41f0
摘要

Abstract In the realm of weather forecasting, the implementation of Artificial Intelligence (AI) represents a transformative approach. However, AI weather forecasting method still faces challenges in accurately predicting meso- and smaller-scale processes and failing to directly capture extreme precipitation due to regression algorithm’s nature, coarse resolution, and limitations in key variables like precipitation. Therefore, we propose a state-of-the-art technology which integrates the strengths of the Pangu-weather AI weather forecasting with the traditional regional weather model, focusing specifically on enhancing the prediction of extreme precipitation events, as mainly exemplified by an unprecedented precipitation in North China from 29 July to 1 August 2023, and an additional extraordinary precipitation event as a supplementary validation to further ensure the accuracy of this technology. The results show that the AI-driven approach exhibits superior performance in capturing the spatial and temporal dynamics of extreme precipitation events. Remarkably, with a threshold of 400 mm, the AI-driven model secures a Threat Score (TS) of 0.1 for forecast lead time reaching up to 8.5 d. This performance notably surpasses the performance of traditional GFS-Driven models, which achieve a similar TS only within a limited 3-day forecast lead time. This considerable enhancement in forecast accuracy, especially over extended lead times illustrates the AI-driven model’s potential to advance in long-term forecasts of extreme precipitation, previously considered challenging, emphasizing the potential of AI in augmenting and refining traditional weather prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无住生心完成签到,获得积分10
刚刚
小秦秦完成签到 ,获得积分10
1秒前
hhh完成签到,获得积分20
3秒前
nannan发布了新的文献求助10
5秒前
7秒前
7秒前
忧虑的钻石应助Airi采纳,获得10
8秒前
科研小生完成签到,获得积分10
8秒前
SciGPT应助科研通管家采纳,获得10
10秒前
InfoNinja应助科研通管家采纳,获得30
10秒前
oceanao应助科研通管家采纳,获得10
10秒前
10秒前
InfoNinja应助科研通管家采纳,获得30
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
13秒前
14秒前
科研小生发布了新的文献求助10
14秒前
17秒前
临水思长发布了新的文献求助10
18秒前
土豆你个西红柿完成签到 ,获得积分10
22秒前
薛薛发布了新的文献求助10
22秒前
23秒前
mike2012完成签到 ,获得积分10
23秒前
蘇q完成签到 ,获得积分10
24秒前
亵渎完成签到,获得积分10
28秒前
吴大师已经玩明白了完成签到,获得积分10
29秒前
29秒前
31秒前
zhangyunyun完成签到,获得积分10
31秒前
struggling2026完成签到 ,获得积分10
32秒前
嗯哼举报机智向松求助涉嫌违规
32秒前
33秒前
汉堡包应助无心的胡萝卜采纳,获得10
35秒前
赘婿应助findtruth采纳,获得10
38秒前
郝宝真发布了新的文献求助10
39秒前
Ly驳回了华仔应助
40秒前
Kuhn_W完成签到,获得积分10
42秒前
44秒前
赎罪完成签到 ,获得积分10
44秒前
随机子应助高丽娜采纳,获得10
45秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165402
求助须知:如何正确求助?哪些是违规求助? 2816499
关于积分的说明 7912856
捐赠科研通 2476071
什么是DOI,文献DOI怎么找? 1318651
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388