Improvement of disastrous extreme precipitation forecasting in North China by Pangu-weather AI-driven regional WRF model

天气研究与预报模式 气候学 降水 气象学 环境科学 中国 热带气旋预报模式 天气预报 地理 地质学 考古
作者
Hongxiong Xu,Yang Zhao,Dajun Zhao,Yihong Duan,Xiangde Xu
出处
期刊:Environmental Research Letters [IOP Publishing]
卷期号:19 (5): 054051-054051 被引量:6
标识
DOI:10.1088/1748-9326/ad41f0
摘要

Abstract In the realm of weather forecasting, the implementation of Artificial Intelligence (AI) represents a transformative approach. However, AI weather forecasting method still faces challenges in accurately predicting meso- and smaller-scale processes and failing to directly capture extreme precipitation due to regression algorithm’s nature, coarse resolution, and limitations in key variables like precipitation. Therefore, we propose a state-of-the-art technology which integrates the strengths of the Pangu-weather AI weather forecasting with the traditional regional weather model, focusing specifically on enhancing the prediction of extreme precipitation events, as mainly exemplified by an unprecedented precipitation in North China from 29 July to 1 August 2023, and an additional extraordinary precipitation event as a supplementary validation to further ensure the accuracy of this technology. The results show that the AI-driven approach exhibits superior performance in capturing the spatial and temporal dynamics of extreme precipitation events. Remarkably, with a threshold of 400 mm, the AI-driven model secures a Threat Score (TS) of 0.1 for forecast lead time reaching up to 8.5 d. This performance notably surpasses the performance of traditional GFS-Driven models, which achieve a similar TS only within a limited 3-day forecast lead time. This considerable enhancement in forecast accuracy, especially over extended lead times illustrates the AI-driven model’s potential to advance in long-term forecasts of extreme precipitation, previously considered challenging, emphasizing the potential of AI in augmenting and refining traditional weather prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daaarrr完成签到,获得积分10
1秒前
非一发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
乐乐应助事在人为采纳,获得10
7秒前
8秒前
jisujun完成签到,获得积分20
8秒前
41应助momo采纳,获得10
9秒前
DijiaXu应助jszhoucl采纳,获得10
11秒前
热爱科研的小白鼠完成签到,获得积分10
11秒前
11秒前
爱穿毛袜完成签到,获得积分10
12秒前
大模型应助LJJ采纳,获得10
12秒前
spirit完成签到 ,获得积分10
13秒前
思源应助hhh采纳,获得10
13秒前
14秒前
正直的魔镜完成签到 ,获得积分10
15秒前
17秒前
KM比比发布了新的文献求助10
18秒前
如此完成签到,获得积分10
18秒前
qq完成签到 ,获得积分10
19秒前
qqq发布了新的文献求助10
20秒前
火星上鑫鹏完成签到,获得积分10
20秒前
事在人为发布了新的文献求助10
20秒前
沉默的婴发布了新的文献求助20
21秒前
杨涵完成签到 ,获得积分10
22秒前
ponysmile完成签到,获得积分20
23秒前
葡萄完成签到,获得积分10
23秒前
23秒前
共享精神应助卖萌的秋田采纳,获得10
24秒前
25秒前
阿钉发布了新的文献求助10
27秒前
27秒前
tannie完成签到 ,获得积分10
29秒前
31秒前
LJJ发布了新的文献求助10
32秒前
34秒前
英俊的铭应助qqq采纳,获得10
34秒前
Xw完成签到,获得积分10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173