UnitModule: A lightweight joint image enhancement module for underwater object detection

接头(建筑物) 计算机视觉 水下 探测器 人工智能 目标检测 计算机科学 模式识别(心理学) 地质学 工程类 电信 建筑工程 海洋学
作者
Zhuoyan Liu,Bo Wang,Ye Li,Jiaxian He,Yunfeng Li
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:151: 110435-110435 被引量:16
标识
DOI:10.1016/j.patcog.2024.110435
摘要

Underwater object detection faces the problem of underwater image degradation, which affects the performance of the detector. Underwater object detection methods based on noise reduction and image enhancement usually do not provide images preferred by the detector or require additional datasets. In this paper, we propose a plug-and-play Underwater joint image enhancement Module (UnitModule) that provides the input image preferred by the detector. We design an unsupervised learning loss for the joint training of UnitModule with the detector without additional datasets to improve the interaction between UnitModule and the detector. Furthermore, a color cast predictor with the assisting color cast loss and a data augmentation called Underwater Color Random Transfer (UCRT) are designed to improve the performance of UnitModule on underwater images with different color casts. Extensive experiments are conducted on DUO for different object detection models, where UnitModule achieves the highest performance improvement of 2.6 AP for YOLOv5-S and gains the improvement of 3.3 AP on the brand-new test set (URPCtest). And UnitModule significantly improves the performance of all object detection models we test, especially for models with a small number of parameters. In addition, UnitModule with a small number of parameters of 31K has little effect on the inference speed of the original object detection model. Our quantitative and visual analysis also demonstrates the effectiveness of UnitModule in enhancing the input image and improving the perception ability of the detector for object features. The code is available at https://github.com/LEFTeyex/UnitModule.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xumz发布了新的文献求助30
1秒前
2秒前
李亚婷发布了新的文献求助10
2秒前
2秒前
小二郎应助小金鱼儿采纳,获得10
2秒前
852应助gs采纳,获得10
2秒前
汉堡包应助wind采纳,获得10
3秒前
擎天之柱发布了新的文献求助10
3秒前
彭希帆发布了新的文献求助10
4秒前
Laura567完成签到,获得积分10
5秒前
guosheng发布了新的文献求助10
6秒前
顺利的爆米花完成签到 ,获得积分10
6秒前
平淡山芙发布了新的文献求助10
6秒前
第一步催化B完成签到,获得积分10
6秒前
天天快乐应助KAJIKU采纳,获得10
7秒前
秋2完成签到 ,获得积分10
7秒前
7秒前
乐乐应助AJ采纳,获得10
9秒前
orixero应助段辉采纳,获得10
9秒前
欧文完成签到,获得积分10
9秒前
kkanta完成签到,获得积分10
9秒前
搜集达人应助ZhijunXiang采纳,获得10
10秒前
10秒前
井野浮发布了新的文献求助30
10秒前
10秒前
源主儿发布了新的文献求助10
11秒前
hui完成签到,获得积分10
12秒前
西门追命完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
whisper完成签到,获得积分10
14秒前
小分队完成签到,获得积分20
14秒前
英俊的铭应助zhijianzhe采纳,获得10
14秒前
hui发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
16秒前
whisper发布了新的文献求助10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961655
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139004
捐赠科研通 3240407
什么是DOI,文献DOI怎么找? 1790947
邀请新用户注册赠送积分活动 872683
科研通“疑难数据库(出版商)”最低求助积分说明 803306