Toughening epoxy by nano-structured block copolymer to mitigate matrix microcracking of carbon fibre composites at cryogenic temperatures

材料科学 复合材料 环氧树脂 增韧 共聚物 纳米- 基质(化学分析) 碳纤维 艾氏冲击强度试验 复合数 聚合物 韧性 极限抗拉强度
作者
Jiawei Wang,Wenkai Chang,Mohammad S. Islam,Feng Huang,Shuying Wu,L. R. F. Rose,Jin Zhang,Chun H. Wang
出处
期刊:Composites Science and Technology [Elsevier BV]
卷期号:: 110548-110548 被引量:4
标识
DOI:10.1016/j.compscitech.2024.110548
摘要

The incorporation of rigid nanoparticles has proven to enhance microcracking resistance in carbon fibre reinforced polymer (CFRP) composites at cryogenic temperatures, enabling CFRP tanks to store cryogenic liquid like hydrogen without requiring liners. Herein, we investigate efficacy of low-modulus soft nanoparticles in addressing the microcracking challenges inherent in CFRP at cryogenic temperatures. By incorporating a tri-block copolymer (BCP) into an epoxy, nano-structured fillers with an average diameter of approximately 100 nm are formed. Experimental results reveal that, at a 2.5 wt% loading, the BCP significantly increase the fracture energy of the nanocomposite by 392% at −196 °C while maintaining stiffness and strength. More importantly, composite laminates made with the BCP-modified nanocomposite matrix can prevent microcracking carbon fibre composites, even they contain multiple plies with the same orientation, such as [04/904]s, which are known to be highly susceptible to matrix microcracking at cryogenic temperatures. An advanced high-fidelity micromechanical modelling revealed that the observed toughening effect of nanostructured block copolymer at cryogenic temperatures is attributed to the increased fracture resistance of the nanocomposite matrix. The findings of this research demonstrate that low loading of block copolymer can effectively mitigate the initiation and propagation of matrix microcracks at ultra-cold temperatures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助553599712采纳,获得10
刚刚
cruise应助一坨采纳,获得30
刚刚
1秒前
www完成签到,获得积分10
1秒前
在水一方应助wang采纳,获得10
1秒前
Docgyj完成签到 ,获得积分0
2秒前
zqingqing完成签到,获得积分10
2秒前
沉静盼易发布了新的文献求助10
3秒前
cjh发布了新的文献求助10
3秒前
11完成签到,获得积分10
3秒前
丁真完成签到,获得积分10
3秒前
DijiaXu应助廉不可采纳,获得10
3秒前
是真的完成签到 ,获得积分10
3秒前
淇淇发布了新的文献求助10
3秒前
典雅的迎波完成签到,获得积分10
4秒前
4秒前
长情正豪完成签到,获得积分10
4秒前
Zzz完成签到,获得积分10
4秒前
开心妍完成签到 ,获得积分10
5秒前
ahai完成签到,获得积分10
5秒前
6秒前
QiLin完成签到,获得积分10
6秒前
6秒前
落后裙子完成签到,获得积分10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
子车茗应助科研通管家采纳,获得30
8秒前
Bio应助科研通管家采纳,获得30
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
64658应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
fzzzzlucy应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
9秒前
叮当狗完成签到,获得积分10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
zihanwang应助科研通管家采纳,获得20
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016278
求助须知:如何正确求助?哪些是违规求助? 3556388
关于积分的说明 11320934
捐赠科研通 3289218
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887940
科研通“疑难数据库(出版商)”最低求助积分说明 812060