Toughening epoxy by nano-structured block copolymer to mitigate matrix microcracking of carbon fibre composites at cryogenic temperatures

材料科学 复合材料 环氧树脂 增韧 共聚物 纳米- 基质(化学分析) 碳纤维 艾氏冲击强度试验 复合数 聚合物 韧性 极限抗拉强度
作者
Jiawei Wang,Wenkai Chang,Mohammad S. Islam,Feng Huang,Shuying Wu,L. R. F. Rose,Jin Zhang,Chun H. Wang
出处
期刊:Composites Science and Technology [Elsevier]
卷期号:: 110548-110548 被引量:4
标识
DOI:10.1016/j.compscitech.2024.110548
摘要

The incorporation of rigid nanoparticles has proven to enhance microcracking resistance in carbon fibre reinforced polymer (CFRP) composites at cryogenic temperatures, enabling CFRP tanks to store cryogenic liquid like hydrogen without requiring liners. Herein, we investigate efficacy of low-modulus soft nanoparticles in addressing the microcracking challenges inherent in CFRP at cryogenic temperatures. By incorporating a tri-block copolymer (BCP) into an epoxy, nano-structured fillers with an average diameter of approximately 100 nm are formed. Experimental results reveal that, at a 2.5 wt% loading, the BCP significantly increase the fracture energy of the nanocomposite by 392% at −196 °C while maintaining stiffness and strength. More importantly, composite laminates made with the BCP-modified nanocomposite matrix can prevent microcracking carbon fibre composites, even they contain multiple plies with the same orientation, such as [04/904]s, which are known to be highly susceptible to matrix microcracking at cryogenic temperatures. An advanced high-fidelity micromechanical modelling revealed that the observed toughening effect of nanostructured block copolymer at cryogenic temperatures is attributed to the increased fracture resistance of the nanocomposite matrix. The findings of this research demonstrate that low loading of block copolymer can effectively mitigate the initiation and propagation of matrix microcracks at ultra-cold temperatures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助贾不可采纳,获得10
刚刚
奋斗的夜山完成签到 ,获得积分10
刚刚
yana发布了新的文献求助20
刚刚
yijiubingshi完成签到,获得积分10
1秒前
苏南完成签到 ,获得积分10
1秒前
冰激凌UP发布了新的文献求助10
1秒前
SCI发布了新的文献求助10
1秒前
CD发布了新的文献求助10
1秒前
2秒前
yan123发布了新的文献求助10
3秒前
3秒前
充电宝应助yyj采纳,获得10
3秒前
马静雨发布了新的文献求助10
3秒前
云游归尘发布了新的文献求助10
4秒前
5秒前
111发布了新的文献求助10
5秒前
寰宇完成签到,获得积分10
5秒前
5秒前
6秒前
花田雨桐发布了新的文献求助10
6秒前
6秒前
小马甲应助lieditongxu采纳,获得10
6秒前
Jenny应助yan123采纳,获得10
7秒前
狂野的以珊完成签到,获得积分10
7秒前
7秒前
a1oft发布了新的文献求助10
8秒前
8秒前
8秒前
笨笨的不斜完成签到,获得积分10
8秒前
xtqgyy发布了新的文献求助10
8秒前
9秒前
Cat完成签到,获得积分0
9秒前
科研小菜完成签到,获得积分10
10秒前
江南烟雨如笙完成签到,获得积分10
10秒前
10秒前
stt关闭了stt文献求助
10秒前
11秒前
yangang发布了新的文献求助10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794