亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spatial analysis and machine learning prediction of forest fire susceptibility: a comprehensive approach for effective management and mitigation

随机森林 环境科学 支持向量机 森林生态学 气候变化 环境资源管理 生物多样性 点模式分析 防火 生态系统 自然地理学 遥感 空间分布 地理 生态学 计算机科学 机器学习 建筑工程 工程类 生物
作者
Manoranjan Mishra,Rajkumar Guria,Besnik Baraj,Ambika Prasad Nanda,Celso Augusto Guimarães Santos,Richarde Marques da Silva,FX Anjar Tri Laksono
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:926: 171713-171713
标识
DOI:10.1016/j.scitotenv.2024.171713
摘要

Forest fires (FF) in tropical seasonal forests impact ecosystem. Addressing FF in tropical ecosystems has become a priority to mitigate impacts on biodiversity loss and climate change. The escalating frequency and intensity of FF globally have become a mounting concern. Understanding their tendencies, patterns, and vulnerabilities is imperative for conserving ecosystems and facilitating the development of effective prevention and management strategies. This study investigates the trends, patterns, and spatiotemporal distribution of FF for the period of 2001-2022, and delineates the forest fire susceptibility zones in Odisha State, India. The study utilized: (a) MODIS imagery to examine active fire point data; (b) Kernel density tools; (c) FF risk prediction using two machine learning algorithms, namely Support Vector Machine (SVM) and Random Forest (RF); (d) Receiver Operating Characteristic and Area Under the Curve, along with various evaluation metrics; and (e) a total of 19 factors, including three topographical, seven climatic, four biophysical, and five anthropogenic, to create a map indicating areas vulnerable to FF. The validation results revealed that the RF model achieved a precision exceeding 94 % on the validation datasets, while the SVM model reached 89 %. The estimated forest fire susceptibility zones using RF and SVM techniques indicated that 20.14 % and 16.72 % of the area, respectively, fall under the "Very High Forest Fire" susceptibility class. Trend analysis reveals a general upward trend in forest fire occurrences (R2 = 0.59), with a notable increase after 2015, peaking in 2021. Notably, Angul district was identified as the most affected area, documenting the highest number of forest fire incidents over the past 22 years. Additionally, forest fire mitigation plans have been developed by drawing insights from forest fire management strategies implemented in various countries worldwide. Overall, this analysis provides valuable insights for policymakers and forest management authorities to develop effective strategies for forest fire prevention and mitigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松的惜芹应助喂喂采纳,获得10
1秒前
淳于如雪发布了新的文献求助10
4秒前
LLL完成签到 ,获得积分10
8秒前
yar应助淳于如雪采纳,获得10
9秒前
Koking关注了科研通微信公众号
14秒前
15秒前
淳于如雪完成签到,获得积分20
17秒前
lv发布了新的文献求助10
18秒前
我是老大应助吴嘉俊采纳,获得10
21秒前
22秒前
在水一方应助阿九采纳,获得10
27秒前
27秒前
ZT完成签到,获得积分10
31秒前
搜集达人应助zhouleiwang采纳,获得10
32秒前
吴嘉俊发布了新的文献求助10
33秒前
仙人掌王朝完成签到,获得积分10
35秒前
38秒前
Hello应助zhouleiwang采纳,获得10
38秒前
阿九完成签到,获得积分10
41秒前
lllxxx完成签到 ,获得积分10
42秒前
lv发布了新的文献求助10
43秒前
冉亦完成签到,获得积分10
47秒前
WGS完成签到,获得积分10
48秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
华仔应助科研通管家采纳,获得20
49秒前
吉吉吉完成签到 ,获得积分10
51秒前
52秒前
阿九发布了新的文献求助10
57秒前
大胆的小懒猪完成签到 ,获得积分10
59秒前
111完成签到 ,获得积分10
1分钟前
1分钟前
yx_cheng应助001az采纳,获得30
1分钟前
1分钟前
miles完成签到,获得积分10
1分钟前
简单山水发布了新的文献求助10
1分钟前
Yina完成签到 ,获得积分10
1分钟前
友好胜完成签到 ,获得积分10
1分钟前
田様应助滴滴哒采纳,获得10
1分钟前
苔原猫咪甜甜圈完成签到,获得积分10
1分钟前
研友_ngkyGn应助Long采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532049
关于积分的说明 11256153
捐赠科研通 3270925
什么是DOI,文献DOI怎么找? 1805123
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216