清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning Prostate MRI Segmentation Accuracy and Robustness: A Systematic Review

人工智能 深度学习 计算机科学 分割 前列腺 机器学习 稳健性(进化) 医学 医学物理学 生物化学 基因 化学 癌症 内科学
作者
Mohammad-Kasim Fassia,Adithya Balasubramanian,Sungmin Woo,Hebert Alberto Vargas,Hedvig Hricak,Ender Konukoğlu,Anton S. Becker
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (4)
标识
DOI:10.1148/ryai.230138
摘要

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To investigate the accuracy and robustness of prostate segmentation using deep learning across various training data sizes, MRI vendors, prostate zones, and testing methods relative to fellowship-trained diagnostic radiologists. Materials and methods In this systematic review, EMBASE, PubMed, Scopus and Web of Science databases were queried for English-language articles using keywords and related terms for prostate MRI segmentation and deep learning algorithms dated to July 31, 2022. A total of 691 articles from the search query were collected, and subsequently filtered to 48 based on predefined inclusion and exclusion criteria. Multiple characteristics were extracted from selected studies, such as deep learning algorithm performance, MRI vendor, and training dataset features. The primary outcome was comparison of mean Dice similarity coefficient (DSC) for prostate segmentation for deep learning algorithms versus diagnostic radiologists. Results Forty-eight studies were included. The vast majority of published deep learning algorithms for whole prostate gland segmentation (39/42 or 93%) had a DSC at or above expert level (DSC ≥ 0.86). The mean DSC was 0.79 ± 0.06 for peripheral zone, 0.87 ± 0.05 for transition zone, and 0.90 ± 0.04 for whole prostate gland segmentation. For selected studies using one major MRI vendor, the mean DSCs of each were as follows: GE (3/48 studies) 0.92 ± 0.03, Philips (4/48 studies) 0.92 ± 0.02, and Siemens (6/48 studies) 0.91 ± 0.03. Conclusion Deep learning algorithms for prostate MRI segmentation demonstrated comparable accuracy to expert radiologists despite varying parameters, therefore future research should shift toward evaluating segmentation robustness and patient outcomes across diverse clinical settings. ©RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aq22完成签到 ,获得积分10
17秒前
摇不滚摇滚完成签到 ,获得积分10
18秒前
zly完成签到 ,获得积分10
20秒前
wang完成签到,获得积分10
22秒前
43秒前
1分钟前
老马哥完成签到,获得积分0
1分钟前
领导范儿应助枯藤老柳树采纳,获得10
1分钟前
TOUHOUU完成签到 ,获得积分10
1分钟前
燕晓啸完成签到 ,获得积分0
1分钟前
雪白的绯完成签到 ,获得积分10
2分钟前
huiluowork完成签到 ,获得积分10
2分钟前
回首不再是少年完成签到,获得积分0
2分钟前
重重重飞完成签到 ,获得积分10
2分钟前
ghan完成签到 ,获得积分10
2分钟前
开放访天完成签到 ,获得积分10
2分钟前
宇文雨文完成签到 ,获得积分10
3分钟前
游01完成签到 ,获得积分10
3分钟前
风秋杨完成签到 ,获得积分10
3分钟前
wanci应助jason采纳,获得10
4分钟前
有人应助摆渡人采纳,获得10
4分钟前
今后应助jason采纳,获得10
4分钟前
陈糯米完成签到,获得积分10
4分钟前
ljssll完成签到 ,获得积分10
4分钟前
王春琰完成签到 ,获得积分10
4分钟前
huanghe完成签到,获得积分10
4分钟前
执着易形完成签到 ,获得积分10
4分钟前
岩松完成签到 ,获得积分10
4分钟前
和谐的夏岚完成签到 ,获得积分10
4分钟前
摆渡人完成签到,获得积分10
5分钟前
dragonhmw完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
曾经不言完成签到 ,获得积分10
6分钟前
xiyin完成签到,获得积分10
6分钟前
井小浩完成签到 ,获得积分10
6分钟前
SwapExisting完成签到 ,获得积分10
6分钟前
123完成签到 ,获得积分10
6分钟前
xiyin发布了新的文献求助10
7分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793662
关于积分的说明 7807147
捐赠科研通 2449982
什么是DOI,文献DOI怎么找? 1303563
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350