亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An online state-of-health estimation method for lithium-ion battery based on linear parameter-varying modeling framework

电池(电) 健康状况 锂离子电池 非线性系统 计算机科学 荷电状态 线性模型 在线模型 子空间拓扑 可靠性工程 工程类 人工智能 机器学习 功率(物理) 数学 统计 物理 量子力学
作者
Yong Li,Liye Wang,Yanbiao Feng,Chenglin Liao,Jue Yang
出处
期刊:Energy [Elsevier]
卷期号:298: 131277-131277 被引量:3
标识
DOI:10.1016/j.energy.2024.131277
摘要

The accurate estimation of state-of-health (SOH) is crucial for ensuring the safe and reliable operation of lithium-ion battery systems. However, the intimate coupling between SOH and state-of-charge (SOC) is often overlooked in existing estimation methods, leading to inaccurate estimates. To address this, we propose a linear parameter-varying (LPV) battery model that captures both gradual capacity degradation and rapid dynamic changes. This model integrates traditional linear models with emerging nonlinear models, providing a comprehensive online SOH estimation framework that effectively separates the effects of SOC in the LPV model structure. The model parameters are identified using a subspace algorithm with accelerated aging data. The proposed method is validated by accelerated aging experiments on two sets of battery samples, one for model development and another for model validation. The experimental data show that the LPV battery model can achieve high SOH estimation accuracy, with an average error of 2.85% and 5.51% for SOH, and 0.63% and 1.20% for capacity, respectively. The method also shows the advantages of being easy to implement and highly generalizable, making it suitable for different battery types and application scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
东溟渔夫发布了新的文献求助10
10秒前
牛牛月饼完成签到,获得积分10
17秒前
Akim应助东溟渔夫采纳,获得10
17秒前
BBQ关闭了BBQ文献求助
18秒前
19秒前
1分钟前
v哈哈发布了新的文献求助10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
Ming发布了新的文献求助10
1分钟前
SciGPT应助Ming采纳,获得10
1分钟前
瘦瘦的师发布了新的文献求助10
2分钟前
大模型应助zhengzhster采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
自律发布了新的文献求助10
2分钟前
自律完成签到,获得积分10
2分钟前
BBQ发布了新的文献求助10
3分钟前
Ezekiel给Ezekiel的求助进行了留言
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
BBQ完成签到,获得积分10
3分钟前
lim完成签到,获得积分10
3分钟前
3分钟前
zhengzhster发布了新的文献求助10
4分钟前
小邓完成签到,获得积分10
4分钟前
可乐发布了新的文献求助30
4分钟前
量子星尘发布了新的文献求助10
4分钟前
小于完成签到,获得积分10
4分钟前
4分钟前
Ezekiel发布了新的文献求助10
4分钟前
上官枫完成签到 ,获得积分10
5分钟前
5分钟前
Ming发布了新的文献求助10
5分钟前
小于完成签到,获得积分10
5分钟前
Ming完成签到,获得积分10
5分钟前
merrylake完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
vivishe发布了新的文献求助10
5分钟前
vivishe完成签到,获得积分10
5分钟前
George发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4862399
关于积分的说明 15107785
捐赠科研通 4823068
什么是DOI,文献DOI怎么找? 2581898
邀请新用户注册赠送积分活动 1536037
关于科研通互助平台的介绍 1494433