清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Correlates of quality of life, happiness and life satisfaction among European adults older than 50 years: A machine‐learning approach

幸福 生活满意度 社会心理的 生活质量(医疗保健) 住所 心理学 神经质 老年学 人格 人口学 医学 社会心理学 精神科 社会学 心理治疗师
作者
Gabriele Prati
出处
期刊:Archives of Gerontology and Geriatrics [Elsevier]
卷期号:103: 104791-104791 被引量:30
标识
DOI:10.1016/j.archger.2022.104791
摘要

Previous research has documented the role of different categories of psychosocial factors (i.e., sociodemographic factors, personality, subjective life circumstances, activity, physical health, and childhood circumstances) in predicting subjective well-being and quality of life among older adults. No previous study has simultaneously modeled a large number of these psychosocial factors using a well-powered sample and machine learning algorithms to predict quality of life, happiness, and life satisfaction among older adults. The aim of this paper was to investigate the correlates of quality of life, happiness, and life satisfaction among European adults older than 50 years using machine learning techniques.Data drawn from the Survey of Health, Ageing and Retirement in Europe (SHARE) Wave 7 were used. Participants were 62,500 persons aged 50 years and over living in 26 Continental EU Member States, Switzerland, and Israel. Multiple machine learning regression approaches were used.The algorithms captured 53%, 33%, and 18% of the variance of quality of life, life satisfaction, and happiness, respectively. The most important categories of correlates of quality of life and life satisfaction were physical health and subjective life circumstances. Sociodemographic factors (mostly country of residence) and psychological variables were the most important categories of correlates of happiness.This study highlights subjective poverty, self-perceived health, country of residence, subjective survival probability, and personality factors (especially neuroticism) as important correlates of quality of life, happiness, and life satisfaction. These findings provide evidence-based recommendations for practice and/or policy implications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
HJJHJH完成签到,获得积分20
26秒前
HJJHJH发布了新的文献求助30
29秒前
汉堡包应助Nan采纳,获得10
30秒前
41秒前
Nan发布了新的文献求助10
45秒前
Nan驳回了李爱国应助
1分钟前
ChenYX完成签到 ,获得积分10
1分钟前
zhang完成签到,获得积分20
1分钟前
樱桃猴子应助白华苍松采纳,获得10
1分钟前
顺利的小蚂蚁完成签到,获得积分10
2分钟前
2分钟前
2分钟前
鱼太闲发布了新的文献求助10
2分钟前
Guo完成签到 ,获得积分10
2分钟前
小马甲应助鱼太闲采纳,获得10
2分钟前
2分钟前
单薄绮露完成签到,获得积分10
3分钟前
3分钟前
3分钟前
文艺猫咪发布了新的文献求助10
3分钟前
3分钟前
樱桃猴子应助白华苍松采纳,获得10
3分钟前
3分钟前
Nan发布了新的文献求助10
3分钟前
3分钟前
3分钟前
行走完成签到,获得积分10
4分钟前
马马马完成签到 ,获得积分10
4分钟前
4分钟前
小蘑菇应助文艺猫咪采纳,获得10
4分钟前
4分钟前
4分钟前
ChenYX发布了新的文献求助10
4分钟前
Lucas应助白华苍松采纳,获得10
4分钟前
5分钟前
雷九万班完成签到 ,获得积分0
5分钟前
5分钟前
青出于蓝蔡完成签到,获得积分10
5分钟前
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526584
求助须知:如何正确求助?哪些是违规求助? 3107022
关于积分的说明 9282092
捐赠科研通 2804622
什么是DOI,文献DOI怎么找? 1539534
邀请新用户注册赠送积分活动 716583
科研通“疑难数据库(出版商)”最低求助积分说明 709581