Correlates of quality of life, happiness and life satisfaction among European adults older than 50 years: A machine‐learning approach

幸福 生活满意度 社会心理的 生活质量(医疗保健) 住所 心理学 神经质 老年学 人格 人口学 医学 社会心理学 精神科 社会学 心理治疗师
作者
Gabriele Prati
出处
期刊:Archives of Gerontology and Geriatrics [Elsevier BV]
卷期号:103: 104791-104791 被引量:30
标识
DOI:10.1016/j.archger.2022.104791
摘要

Previous research has documented the role of different categories of psychosocial factors (i.e., sociodemographic factors, personality, subjective life circumstances, activity, physical health, and childhood circumstances) in predicting subjective well-being and quality of life among older adults. No previous study has simultaneously modeled a large number of these psychosocial factors using a well-powered sample and machine learning algorithms to predict quality of life, happiness, and life satisfaction among older adults. The aim of this paper was to investigate the correlates of quality of life, happiness, and life satisfaction among European adults older than 50 years using machine learning techniques.Data drawn from the Survey of Health, Ageing and Retirement in Europe (SHARE) Wave 7 were used. Participants were 62,500 persons aged 50 years and over living in 26 Continental EU Member States, Switzerland, and Israel. Multiple machine learning regression approaches were used.The algorithms captured 53%, 33%, and 18% of the variance of quality of life, life satisfaction, and happiness, respectively. The most important categories of correlates of quality of life and life satisfaction were physical health and subjective life circumstances. Sociodemographic factors (mostly country of residence) and psychological variables were the most important categories of correlates of happiness.This study highlights subjective poverty, self-perceived health, country of residence, subjective survival probability, and personality factors (especially neuroticism) as important correlates of quality of life, happiness, and life satisfaction. These findings provide evidence-based recommendations for practice and/or policy implications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
赘婿应助XD.东采纳,获得10
1秒前
radish完成签到,获得积分10
1秒前
向晚完成签到,获得积分10
2秒前
红莲墨生完成签到,获得积分10
2秒前
2秒前
蓝莓松饼完成签到,获得积分10
3秒前
4秒前
6秒前
蓝莓松饼发布了新的文献求助10
7秒前
瞿霞完成签到 ,获得积分10
7秒前
龙抬头完成签到,获得积分10
7秒前
Asoqiang发布了新的文献求助10
8秒前
8秒前
一二三四五完成签到,获得积分10
8秒前
ymmmaomao23发布了新的文献求助10
8秒前
9秒前
10秒前
淡定汉堡发布了新的文献求助10
11秒前
11秒前
zojoy完成签到,获得积分10
11秒前
12秒前
12秒前
心灵美鑫完成签到 ,获得积分10
13秒前
无极完成签到 ,获得积分10
14秒前
zzz发布了新的文献求助10
14秒前
DrJiang完成签到,获得积分10
15秒前
岳小龙完成签到 ,获得积分10
15秒前
脑洞疼应助懒洋洋采纳,获得10
16秒前
17秒前
XD.东发布了新的文献求助10
17秒前
asd发布了新的文献求助10
17秒前
yyk发布了新的文献求助10
17秒前
淡定汉堡完成签到,获得积分10
17秒前
19秒前
Akim应助吗喽采纳,获得10
20秒前
now发布了新的文献求助10
20秒前
二指弹完成签到 ,获得积分10
20秒前
好好好发布了新的文献求助10
21秒前
吴彦祖完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010961
求助须知:如何正确求助?哪些是违规求助? 3550599
关于积分的说明 11306013
捐赠科研通 3284931
什么是DOI,文献DOI怎么找? 1810918
邀请新用户注册赠送积分活动 886594
科研通“疑难数据库(出版商)”最低求助积分说明 811514