HRNet- and PSPNet-based multiband semantic segmentation of remote sensing images

计算机科学 人工智能 分割 模式识别(心理学) 图像分割 像素 棱锥(几何) 背景(考古学) 联营 特征(语言学) 尺度空间分割 卷积神经网络 基于分割的对象分类 计算机视觉 遥感 数学 地理 几何学 考古 语言学 哲学
作者
Yan Sun,Wenxi Zheng
出处
期刊:Neural Computing and Applications [Springer Nature]
被引量:28
标识
DOI:10.1007/s00521-022-07737-w
摘要

High-resolution remote sensing images have become mainstream remote sensing data, but there is an obvious "salt and pepper phenomenon" in the existing semantic segmentation methods of high-resolution remote sensing images. The purpose of this paper is to propose an improved deep convolutional neural network based on HRNet and PSPNet to segment and realize deep scene analysis and improve the pixel-level semantic segmentation representation of high-resolution remote sensing images. Based on hierarchical multiscale segmentation technology research, the main method is multiband segmentation; the vegetation, buildings, roads, waters and bare land rule sets in the experimental area are established, the classification is extracted, and the category is labeled at each pixel in the image. Using the image classification network structure, different levels of feature vectors can be used to meet the judgment requirements. The HRNet and PSPNet algorithms are used to analyze the scene and obtain the category labels of all pixels in an image. Experiments have shown that artificial intelligence uses the pyramid pooling module in the classification and recognition of CCF satellite images. In the context of integrating different regions, PSPNet affects the region segmentation accuracy. FCN, DeepLab and PSPNet are now the best methods and achieve 98% accuracy. However, the PSPNet object recognition algorithm has better advantages in specific areas. Experiments show that this method has high segmentation accuracy and good generalization ability and can be used in practical engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
凶狠的傲蕾完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
2秒前
哈皮完成签到,获得积分10
2秒前
烟花应助泡泡采纳,获得10
2秒前
蔫清完成签到,获得积分10
2秒前
wwwwwwww完成签到,获得积分10
3秒前
ttt发布了新的文献求助10
3秒前
3秒前
慕青应助落寞的尔芙采纳,获得30
3秒前
4秒前
研友_ZrBNxZ发布了新的文献求助10
4秒前
房恩羽发布了新的文献求助10
4秒前
汉堡包应助Nam22采纳,获得10
4秒前
幸福烤鸡完成签到,获得积分10
4秒前
SciGPT应助sunchaoyue采纳,获得10
5秒前
华仔应助甜蜜凡波采纳,获得10
5秒前
5秒前
yyqx完成签到 ,获得积分10
5秒前
Lucas应助QIQI采纳,获得10
5秒前
5秒前
王二完成签到,获得积分10
5秒前
研友_rLmrgn发布了新的文献求助10
6秒前
6秒前
慢慢的地理人完成签到,获得积分10
7秒前
李爱国应助yyl采纳,获得10
7秒前
weihe完成签到,获得积分10
7秒前
完美世界应助香菜丸子采纳,获得10
7秒前
8秒前
8秒前
yanjiuhuzu完成签到,获得积分10
8秒前
8秒前
nini发布了新的文献求助10
9秒前
科目三应助jin晨采纳,获得10
9秒前
yanan完成签到,获得积分10
9秒前
10秒前
10秒前
hooke发布了新的文献求助10
10秒前
10秒前
王二发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894