HRNet- and PSPNet-based multiband semantic segmentation of remote sensing images

计算机科学 人工智能 分割 模式识别(心理学) 图像分割 像素 棱锥(几何) 背景(考古学) 联营 特征(语言学) 尺度空间分割 卷积神经网络 基于分割的对象分类 计算机视觉 遥感 数学 地理 哲学 语言学 考古 几何学
作者
Sun Yan,Wenxi Zheng
出处
期刊:Neural Computing and Applications [Springer Science+Business Media]
被引量:19
标识
DOI:10.1007/s00521-022-07737-w
摘要

High-resolution remote sensing images have become mainstream remote sensing data, but there is an obvious "salt and pepper phenomenon" in the existing semantic segmentation methods of high-resolution remote sensing images. The purpose of this paper is to propose an improved deep convolutional neural network based on HRNet and PSPNet to segment and realize deep scene analysis and improve the pixel-level semantic segmentation representation of high-resolution remote sensing images. Based on hierarchical multiscale segmentation technology research, the main method is multiband segmentation; the vegetation, buildings, roads, waters and bare land rule sets in the experimental area are established, the classification is extracted, and the category is labeled at each pixel in the image. Using the image classification network structure, different levels of feature vectors can be used to meet the judgment requirements. The HRNet and PSPNet algorithms are used to analyze the scene and obtain the category labels of all pixels in an image. Experiments have shown that artificial intelligence uses the pyramid pooling module in the classification and recognition of CCF satellite images. In the context of integrating different regions, PSPNet affects the region segmentation accuracy. FCN, DeepLab and PSPNet are now the best methods and achieve 98% accuracy. However, the PSPNet object recognition algorithm has better advantages in specific areas. Experiments show that this method has high segmentation accuracy and good generalization ability and can be used in practical engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵的啤酒完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
康康康发布了新的文献求助10
2秒前
2秒前
纯真玉兰完成签到 ,获得积分10
3秒前
李多鱼完成签到,获得积分20
4秒前
4秒前
yznfly应助318yyl采纳,获得30
4秒前
4秒前
共享精神应助zhang采纳,获得10
4秒前
123发布了新的文献求助10
5秒前
5秒前
海豚的盆友完成签到,获得积分10
6秒前
6秒前
7秒前
叮咚jingle发布了新的文献求助10
7秒前
7秒前
整齐的小鸽子完成签到,获得积分10
8秒前
9秒前
Neshama完成签到,获得积分10
9秒前
在水一方应助蒲云海采纳,获得10
9秒前
helitrope完成签到,获得积分10
10秒前
10秒前
我是老大应助留言采纳,获得10
11秒前
Aris发布了新的文献求助10
12秒前
鳗鱼盼夏发布了新的文献求助10
12秒前
张二拿应助悉达多采纳,获得10
12秒前
coconut完成签到 ,获得积分10
13秒前
SYLH应助Ray采纳,获得10
13秒前
上官若男应助逗逗采纳,获得10
13秒前
mt1314完成签到 ,获得积分10
16秒前
多肉丸子发布了新的文献求助10
17秒前
17秒前
英姑应助yolo采纳,获得10
18秒前
18秒前
不会打架的熊完成签到,获得积分10
18秒前
20秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950817
求助须知:如何正确求助?哪些是违规求助? 3496247
关于积分的说明 11080980
捐赠科研通 3226673
什么是DOI,文献DOI怎么找? 1783954
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993