Breast cancer detection using deep learning: Datasets, methods, and challenges ahead

乳腺摄影术 人工智能 磁共振成像 医学 深度学习 乳腺癌 射线照相术 阶段(地层学) 放射科 机器学习 计算机科学 癌症 医学物理学 内科学 古生物学 生物
作者
Nusrat Mohi Ud Din,Rayees Ahmad Dar,Muzafar Rasool,Assif Assad
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:149: 106073-106073 被引量:175
标识
DOI:10.1016/j.compbiomed.2022.106073
摘要

Breast Cancer (BC) is the most commonly diagnosed cancer and second leading cause of mortality among women. About 1 in 8 US women (about 13%) will develop invasive BC throughout their lifetime. Early detection of this life-threatening disease not only increases the survival rate but also reduces the treatment cost. Fortunately, advancements in radiographic imaging like "Mammograms", "Computed Tomography (CT)", "Magnetic Resonance Imaging (MRI)", "3D Mammography", and "Histopathological Imaging (HI)" have made it feasible to diagnose this life-taking disease at an early stage. However, the analysis of radiographic images and Histopathological images is done by experienced radiologists and pathologists, respectively. The process is not only costly but also error-prone. Over the last ten years, Computer Vision and Machine Learning (ML) have transformed the world in every way possible. Deep learning (DL), a subfield of ML has shown outstanding results in a variety of fields, particularly in the biomedical industry, because of its ability to handle large amounts of data. DL techniques automatically extract the features by analyzing the high dimensional and correlated data efficiently. The potential and ability of DL models have also been utilized and evaluated in the identification and prognosis of BC, utilizing radiographic and Histopathological images, and have performed admirably. However, AI has shown good claims in retrospective studies only. External validations are needed for translating these cutting-edge AI tools as a clinical decision maker. The main aim of this research work is to present the critical analysis of the research and findings already done to detect and classify BC using various imaging modalities including "Mammography", "Histopathology", "Ultrasound", "PET/CT", "MRI", and "Thermography". At first, a detailed review of the past research papers using Machine Learning, Deep Learning and Deep Reinforcement Learning for BC classification and detection is carried out. We also review the publicly available datasets for the above-mentioned imaging modalities to make future research more accessible. Finally, a critical discussion section has been included to elaborate open research difficulties and prospects for future study in this emerging area, demonstrating the limitations of Deep Learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大福发布了新的文献求助10
1秒前
CHENJIRU发布了新的文献求助10
1秒前
上官若男应助xiaofenzi采纳,获得10
2秒前
852应助喜悦小猫咪采纳,获得10
3秒前
小小智完成签到,获得积分0
3秒前
野性的岂愈完成签到,获得积分10
3秒前
zhz发布了新的文献求助10
3秒前
5秒前
段段砖应助kangkang采纳,获得10
6秒前
文艺的金针菇完成签到 ,获得积分10
7秒前
王羊补牢发布了新的文献求助10
8秒前
9秒前
9秒前
科研通AI5应助番茄酱采纳,获得10
10秒前
zhang完成签到 ,获得积分10
11秒前
打哈哈儿发布了新的文献求助10
12秒前
kery完成签到,获得积分10
13秒前
13秒前
giao快查完成签到,获得积分10
13秒前
betty25发布了新的文献求助10
13秒前
fzzf完成签到,获得积分10
13秒前
拾柒完成签到,获得积分10
14秒前
牛贝贝完成签到,获得积分10
14秒前
15秒前
付理想发布了新的文献求助10
15秒前
田様应助joycheung采纳,获得10
15秒前
任大师兄应助xxs采纳,获得10
17秒前
17秒前
默默怜阳发布了新的文献求助10
17秒前
牛贝贝关注了科研通微信公众号
19秒前
20秒前
ZgnomeshghT发布了新的文献求助10
21秒前
小婉发布了新的文献求助10
21秒前
端庄之云发布了新的文献求助10
21秒前
研友_Z1WkgL完成签到,获得积分10
21秒前
myheat完成签到,获得积分10
23秒前
23秒前
23秒前
深情安青应助懵懂的紫夏采纳,获得10
24秒前
DJMZ发布了新的文献求助10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734798
求助须知:如何正确求助?哪些是违规求助? 3278733
关于积分的说明 10011078
捐赠科研通 2995408
什么是DOI,文献DOI怎么找? 1643417
邀请新用户注册赠送积分活动 781158
科研通“疑难数据库(出版商)”最低求助积分说明 749285