Breast cancer detection using deep learning: Datasets, methods, and challenges ahead

乳腺摄影术 人工智能 磁共振成像 医学 深度学习 乳腺癌 射线照相术 阶段(地层学) 放射科 机器学习 计算机科学 癌症 医学物理学 内科学 生物 古生物学
作者
Nusrat Mohi Ud Din,Rayees Ahmad Dar,Muzafar Rasool,Assif Assad
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:149: 106073-106073 被引量:71
标识
DOI:10.1016/j.compbiomed.2022.106073
摘要

Breast Cancer (BC) is the most commonly diagnosed cancer and second leading cause of mortality among women. About 1 in 8 US women (about 13%) will develop invasive BC throughout their lifetime. Early detection of this life-threatening disease not only increases the survival rate but also reduces the treatment cost. Fortunately, advancements in radiographic imaging like "Mammograms", "Computed Tomography (CT)", "Magnetic Resonance Imaging (MRI)", "3D Mammography", and "Histopathological Imaging (HI)" have made it feasible to diagnose this life-taking disease at an early stage. However, the analysis of radiographic images and Histopathological images is done by experienced radiologists and pathologists, respectively. The process is not only costly but also error-prone. Over the last ten years, Computer Vision and Machine Learning (ML) have transformed the world in every way possible. Deep learning (DL), a subfield of ML has shown outstanding results in a variety of fields, particularly in the biomedical industry, because of its ability to handle large amounts of data. DL techniques automatically extract the features by analyzing the high dimensional and correlated data efficiently. The potential and ability of DL models have also been utilized and evaluated in the identification and prognosis of BC, utilizing radiographic and Histopathological images, and have performed admirably. However, AI has shown good claims in retrospective studies only. External validations are needed for translating these cutting-edge AI tools as a clinical decision maker. The main aim of this research work is to present the critical analysis of the research and findings already done to detect and classify BC using various imaging modalities including "Mammography", "Histopathology", "Ultrasound", "PET/CT", "MRI", and "Thermography". At first, a detailed review of the past research papers using Machine Learning, Deep Learning and Deep Reinforcement Learning for BC classification and detection is carried out. We also review the publicly available datasets for the above-mentioned imaging modalities to make future research more accessible. Finally, a critical discussion section has been included to elaborate open research difficulties and prospects for future study in this emerging area, demonstrating the limitations of Deep Learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yurong完成签到,获得积分10
1秒前
1秒前
Anyemzl发布了新的文献求助10
2秒前
2秒前
Ava应助HeyYou采纳,获得10
3秒前
科研通AI2S应助ZRDJ采纳,获得10
3秒前
4秒前
Two_h发布了新的文献求助10
4秒前
4秒前
好困应助学呀学采纳,获得10
5秒前
善学以致用应助mango524采纳,获得10
5秒前
安然发布了新的文献求助10
6秒前
ww发布了新的文献求助20
7秒前
无花果应助乐正一兰采纳,获得10
7秒前
7秒前
7秒前
kaww发布了新的文献求助10
8秒前
8秒前
hukun完成签到,获得积分10
9秒前
dreammaker完成签到,获得积分10
10秒前
X_Nano完成签到,获得积分10
10秒前
hhhhhhxxxxxx发布了新的文献求助30
11秒前
苻醉蓝完成签到,获得积分10
12秒前
haowu发布了新的文献求助30
13秒前
君陌完成签到,获得积分10
13秒前
14秒前
achang发布了新的文献求助10
14秒前
小宋完成签到,获得积分10
14秒前
14秒前
kaww完成签到,获得积分10
15秒前
文艺点点完成签到,获得积分10
15秒前
15秒前
16秒前
糊涂的剑完成签到,获得积分20
17秒前
微风徐徐完成签到,获得积分20
17秒前
xingxing完成签到,获得积分10
18秒前
orixero应助liubin采纳,获得10
19秒前
糊涂的剑发布了新的文献求助10
19秒前
mango524发布了新的文献求助10
19秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3216393
求助须知:如何正确求助?哪些是违规求助? 2865454
关于积分的说明 8147993
捐赠科研通 2531969
什么是DOI,文献DOI怎么找? 1365560
科研通“疑难数据库(出版商)”最低求助积分说明 644515
邀请新用户注册赠送积分活动 617338