亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic localization of target point for subthalamic nucleus‐deep brain stimulation via hierarchical attention‐UNet based MRI segmentation

脑深部刺激 分割 丘脑底核 人工智能 计算机科学 深度学习 图像分割 磁共振成像 背景(考古学) 模式识别(心理学) 计算机视觉 帕金森病 医学 放射科 病理 古生物学 生物 疾病
作者
Liu Rui‐Qiang,Xiaodong Cai,Tu Ren‐Zhe,Caizi Li,Yan Wei,Doudou Zhang,Xiao Lin‐Xia,Weixin Si
出处
期刊:Medical Physics [Wiley]
卷期号:50 (1): 50-60 被引量:11
标识
DOI:10.1002/mp.15956
摘要

Abstract Background Deep brain stimulation of the subthalamic nucleus (STN‐DBS) is an effective treatment for patients with advanced Parkinson's disease, the outcome of this surgery is highly dependent on the accurate placement of the electrode in the optimal target of STN. Purpose In this study, we aim to develop a target localization pipeline for DBS surgery, considering that the heart of this matter is to achieve the STN and red nucleus segmentation, a deep learning‐based automatic segmentation approach is proposed to tackle this issue. Methods To address the problems of ambiguous boundaries and variable shape of the segmentation targets, the hierarchical attention mechanism with two different attention strategies is integrated into an encoder–decoder network for mining both semantics and fine‐grained details for segmentation. The hierarchical attention mechanism is utilized to suppress irrelevant regions in magnetic resonance (MR) images while build long‐range dependency among segmentation targets. Specifically, the attention gate (AG) is integrated into low‐level features to suppress irrelevant regions in an input image while highlighting the salient features useful for segmentation. Besides, the self‐attention involved in the transformer block is integrated into high‐level features to model the global context. Ninety‐nine brain magnetic resonance imaging (MRI) studies were collected from 99 patients with Parkinson's disease undergoing STN‐DBS surgery, among which 80 samples were randomly selected as the training datasets for deep learning training, and ground truths (segmentation masks) were manually generated by radiologists. Results We applied five‐fold cross‐validation on these data to train our model, the mean results on 19 test samples are used to conduct the comparison experiments, the Dice similarity coefficient (DSC), Jaccard (JA), sensitivity (SEN), and HD95 of the segmentation for STN are 88.20%, 80.32%, 90.13%, and 1.14 mm, respectively, outperforming the state‐of‐the‐art STN segmentation method with 2.82%, 4.52%, 2.56%, and 0.02 mm respectively. The source code and trained models of this work have been released in the URL below: https://github.com/liuruiqiang/HAUNet/tree/master . Conclusions In this study, we demonstrate the effectiveness of the hierarchical attention mechanism for building global dependency on high‐level semantic features and enhancing the fine‐grained details on low‐level features, the experimental results show that our method has considerable superiority for STN and red nucleus segmentation, which can provide accurate target localization for STN‐DBS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
NOTHING完成签到 ,获得积分10
4秒前
jyy应助俞辰采纳,获得10
5秒前
xiaozhou发布了新的文献求助10
8秒前
lkk完成签到,获得积分20
9秒前
9秒前
计划发布了新的文献求助10
9秒前
黄芪完成签到 ,获得积分10
11秒前
lkk发布了新的文献求助10
11秒前
sdqdliangkun发布了新的文献求助10
14秒前
17秒前
科学家完成签到 ,获得积分20
18秒前
ding应助lkk采纳,获得10
23秒前
悠哉发布了新的文献求助10
23秒前
小丸子和zz完成签到 ,获得积分10
25秒前
动听衬衫完成签到 ,获得积分20
25秒前
TiAmo完成签到 ,获得积分10
27秒前
GingerF应助呵呵酱采纳,获得50
28秒前
CipherSage应助悠哉采纳,获得10
34秒前
37秒前
41秒前
大龙哥886应助酷炫的平蝶采纳,获得10
42秒前
42秒前
踏实的大神完成签到,获得积分10
42秒前
悲凉的冬天完成签到,获得积分10
45秒前
小杨发布了新的文献求助10
48秒前
田様应助xiaowang采纳,获得10
48秒前
MchemG应助ceeray23采纳,获得20
49秒前
53秒前
55秒前
有趣的银完成签到,获得积分10
57秒前
ZR666888发布了新的文献求助10
57秒前
科研通AI6应助Yiyong采纳,获得20
1分钟前
1分钟前
缓慢的三颜完成签到,获得积分10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
黑翅鸢应助科研通管家采纳,获得10
1分钟前
Ava应助我爱物理采纳,获得10
1分钟前
茧茧完成签到 ,获得积分10
1分钟前
momo给momo的求助进行了留言
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554672
求助须知:如何正确求助?哪些是违规求助? 4639324
关于积分的说明 14655924
捐赠科研通 4581173
什么是DOI,文献DOI怎么找? 2512637
邀请新用户注册赠送积分活动 1487389
关于科研通互助平台的介绍 1458262