已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic localization of target point for subthalamic nucleus‐deep brain stimulation via hierarchical attention‐UNet based MRI segmentation

脑深部刺激 分割 丘脑底核 人工智能 计算机科学 深度学习 图像分割 磁共振成像 背景(考古学) 模式识别(心理学) 计算机视觉 帕金森病 医学 放射科 病理 古生物学 生物 疾病
作者
Liu Rui‐Qiang,Xiaodong Cai,Tu Ren‐Zhe,Caizi Li,Yu‐Ling Wei,Doudou Zhang,Xiao Lin‐Xia,Weixin Si
出处
期刊:Medical Physics [Wiley]
卷期号:50 (1): 50-60 被引量:2
标识
DOI:10.1002/mp.15956
摘要

Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an effective treatment for patients with advanced Parkinson's disease, the outcome of this surgery is highly dependent on the accurate placement of the electrode in the optimal target of STN.In this study, we aim to develop a target localization pipeline for DBS surgery, considering that the heart of this matter is to achieve the STN and red nucleus segmentation, a deep learning-based automatic segmentation approach is proposed to tackle this issue.To address the problems of ambiguous boundaries and variable shape of the segmentation targets, the hierarchical attention mechanism with two different attention strategies is integrated into an encoder-decoder network for mining both semantics and fine-grained details for segmentation. The hierarchical attention mechanism is utilized to suppress irrelevant regions in magnetic resonance (MR) images while build long-range dependency among segmentation targets. Specifically, the attention gate (AG) is integrated into low-level features to suppress irrelevant regions in an input image while highlighting the salient features useful for segmentation. Besides, the self-attention involved in the transformer block is integrated into high-level features to model the global context. Ninety-nine brain magnetic resonance imaging (MRI) studies were collected from 99 patients with Parkinson's disease undergoing STN-DBS surgery, among which 80 samples were randomly selected as the training datasets for deep learning training, and ground truths (segmentation masks) were manually generated by radiologists.We applied five-fold cross-validation on these data to train our model, the mean results on 19 test samples are used to conduct the comparison experiments, the Dice similarity coefficient (DSC), Jaccard (JA), sensitivity (SEN), and HD95 of the segmentation for STN are 88.20%, 80.32%, 90.13%, and 1.14 mm, respectively, outperforming the state-of-the-art STN segmentation method with 2.82%, 4.52%, 2.56%, and 0.02 mm respectively. The source code and trained models of this work have been released in the URL below: https://github.com/liuruiqiang/HAUNet/tree/master.In this study, we demonstrate the effectiveness of the hierarchical attention mechanism for building global dependency on high-level semantic features and enhancing the fine-grained details on low-level features, the experimental results show that our method has considerable superiority for STN and red nucleus segmentation, which can provide accurate target localization for STN-DBS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
零慧完成签到,获得积分10
1秒前
牛仔很忙发布了新的文献求助10
2秒前
慕青应助孙行行采纳,获得10
2秒前
fqm520完成签到,获得积分10
2秒前
3秒前
斯文败类发布了新的文献求助10
3秒前
4秒前
浦肯野应助sky采纳,获得20
4秒前
高兴吐司完成签到,获得积分20
6秒前
飞天三叉戟应助蛋蛋采纳,获得20
6秒前
科目三应助ASD123采纳,获得10
8秒前
科研通AI40应助ASD123采纳,获得10
8秒前
金新皓发布了新的文献求助10
8秒前
高兴吐司发布了新的文献求助10
8秒前
9秒前
隐形曼青应助kaka采纳,获得10
9秒前
kai完成签到,获得积分20
10秒前
yyl发布了新的文献求助10
10秒前
奶油冰淇淋完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
liuxiaoying完成签到,获得积分10
12秒前
MateoX完成签到 ,获得积分10
15秒前
lirishi发布了新的文献求助10
15秒前
毛豆应助Sunny采纳,获得10
15秒前
吹皱一湖春水完成签到 ,获得积分10
15秒前
16秒前
未耕发布了新的文献求助10
17秒前
17秒前
科研通AI2S应助零慧采纳,获得10
17秒前
lx应助蓝莓酱蘸橘子采纳,获得10
17秒前
顾矜应助也曾年少采纳,获得10
18秒前
18秒前
牛仔很忙完成签到,获得积分10
19秒前
娃哈哈完成签到 ,获得积分10
20秒前
21秒前
慕青应助yyl采纳,获得10
21秒前
22秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471259
求助须知:如何正确求助?哪些是违规求助? 3064129
关于积分的说明 9087605
捐赠科研通 2754938
什么是DOI,文献DOI怎么找? 1511647
邀请新用户注册赠送积分活动 698541
科研通“疑难数据库(出版商)”最低求助积分说明 698423