光催化
氮化碳
催化作用
纤维素
选择性
三聚氰胺
化学工程
水溶液
化学
细菌纤维素
生物量(生态学)
有机化学
工程类
海洋学
地质学
作者
Eryu Wang,Ayyaz Mahmood,Shenggui Chen,Wenhong Sun,Tahir Muhmood,Xiaofei Yang,Zupeng Chen
出处
期刊:ACS Catalysis
日期:2022-08-31
卷期号:12 (18): 11206-11215
被引量:79
标识
DOI:10.1021/acscatal.2c02624
摘要
Lignocellulose is the most abundant form of biomass on earth, and its efficient valorization for H2 generation and value-added biochemical production provides a promising strategy to alleviate the currently faced energy shortages. However, the requirements of toxic organic solvents, unsatisfactory conversion, and poor selectivity of biochemicals make the effective biomass photorefinery challenging. Herein, we report the efficient lignocellulose photoreforming including cellulose, hemicellulose, and lignin, using polymeric carbon nitride photocatalyst that was prepared via the pyrolysis of a preorganized supramolecular assembly between cyanuric acid, melamine, and Pt-(NH2-bpy)2. The optimized catalyst exhibits a superior H2 evolution rate of 3.39 mmol g–1 h–1 from the aqueous glucose solution under irradiation of a 427 nm LED light source, which is more than nine times higher than that of the pristine carbon nitride. Furthermore, 100% conversion of glucose and 86% selectivity toward lactic acid are achieved with the system. Density functional theory calculations verify that the introduction of Pt significantly lowers the activation energy barrier for water reduction into hydrogen and facilitates the selective cleavage of the C–C bond of fructose generated by glucose isomerization, which is weakened by electron density shift to the adjacent bond, the essential step to promote lactic acid production. This work presents an effective and promising strategy to couple the H2 generation and value-added biochemical production through biomass photorefinery.
科研通智能强力驱动
Strongly Powered by AbleSci AI