EEG Machine Learning for Analysis of Mild Traumatic Brain Injury: A survey

支持向量机 脑电图 人工智能 特征提取 计算机科学 机器学习 模式识别(心理学) 预处理器 数据预处理 心理学 精神科
作者
Wenling Gu,Ryan Chang,Bohan Yang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2208.08894
摘要

Mild Traumatic Brain Injury (mTBI) is a common brain injury and affects a diverse group of people: soldiers, constructors, athletes, drivers, children, elders, and nearly everyone. Thus, having a well-established, fast, cheap, and accurate classification method is crucial for the well-being of people around the globe. Luckily, using Machine Learning (ML) on electroencephalography (EEG) data shows promising results. This survey analyzed the most cutting-edge articles from 2017 to the present. The articles were searched from the Google Scholar database and went through an elimination process based on our criteria. We reviewed, summarized, and compared the fourteen most cutting-edge machine learning research papers for predicting and classifying mTBI in terms of 1) EEG data types, 2) data preprocessing methods, 3) machine learning feature representations, 4) feature extraction methods, and 5) machine learning classifiers and predictions. The most common EEG data type was human resting-state EEG, with most studies using filters to clean the data. The power spectral, especially alpha and theta power, was the most prevalent feature. The other non-power spectral features, such as entropy, also show their great potential. The Fourier transform is the most common feature extraction method while using neural networks as automatic feature extraction generally returns a high accuracy result. Lastly, Support Vector Machine (SVM) was our survey's most common ML classifier due to its lower computational complexity and solid mathematical theoretical basis. The purpose of this study was to collect and explore a sparsely populated sector of ML, and we hope that our survey has shined some light on the inherent trends, advantages, disadvantages, and preferences of the current state of machine learning-based EEG analysis for mTBI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助甜甜圈采纳,获得10
刚刚
Barry发布了新的文献求助30
刚刚
小二完成签到,获得积分10
3秒前
sandy完成签到,获得积分10
3秒前
都放飞完成签到 ,获得积分10
4秒前
lily完成签到,获得积分10
4秒前
舒心夏山发布了新的文献求助10
6秒前
7秒前
9秒前
shawn发布了新的文献求助10
9秒前
yys完成签到,获得积分10
12秒前
大个应助不做卑微人采纳,获得10
14秒前
15秒前
16秒前
lishui完成签到 ,获得积分10
18秒前
song完成签到,获得积分10
19秒前
ccy应助小二采纳,获得20
20秒前
20秒前
不配.应助CC采纳,获得10
21秒前
henry完成签到,获得积分10
21秒前
研友_VZG7GZ应助123采纳,获得10
21秒前
22秒前
shawn完成签到,获得积分10
22秒前
dgsxl发布了新的文献求助10
22秒前
缥缈夏彤完成签到,获得积分10
22秒前
Willy完成签到,获得积分10
24秒前
Jun发布了新的文献求助10
24秒前
xiaoran发布了新的文献求助20
25秒前
xiu_er发布了新的文献求助10
25秒前
Dawn发布了新的文献求助10
26秒前
慕青应助靓丽初蓝采纳,获得10
28秒前
dgsxl完成签到,获得积分10
30秒前
31秒前
墨海应助靓丽的白山采纳,获得10
34秒前
36秒前
37秒前
小蘑菇应助lihuachen91采纳,获得10
38秒前
舒心夏山完成签到,获得积分10
39秒前
靓丽初蓝发布了新的文献求助10
42秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228046
求助须知:如何正确求助?哪些是违规求助? 2875959
关于积分的说明 8193272
捐赠科研通 2543114
什么是DOI,文献DOI怎么找? 1373502
科研通“疑难数据库(出版商)”最低求助积分说明 646781
邀请新用户注册赠送积分活动 621276