EEG Machine Learning for Analysis of Mild Traumatic Brain Injury: A survey

支持向量机 脑电图 人工智能 特征提取 计算机科学 机器学习 模式识别(心理学) 预处理器 数据预处理 心理学 精神科
作者
Wenling Gu,Ryan Chang,Bohan Yang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2208.08894
摘要

Mild Traumatic Brain Injury (mTBI) is a common brain injury and affects a diverse group of people: soldiers, constructors, athletes, drivers, children, elders, and nearly everyone. Thus, having a well-established, fast, cheap, and accurate classification method is crucial for the well-being of people around the globe. Luckily, using Machine Learning (ML) on electroencephalography (EEG) data shows promising results. This survey analyzed the most cutting-edge articles from 2017 to the present. The articles were searched from the Google Scholar database and went through an elimination process based on our criteria. We reviewed, summarized, and compared the fourteen most cutting-edge machine learning research papers for predicting and classifying mTBI in terms of 1) EEG data types, 2) data preprocessing methods, 3) machine learning feature representations, 4) feature extraction methods, and 5) machine learning classifiers and predictions. The most common EEG data type was human resting-state EEG, with most studies using filters to clean the data. The power spectral, especially alpha and theta power, was the most prevalent feature. The other non-power spectral features, such as entropy, also show their great potential. The Fourier transform is the most common feature extraction method while using neural networks as automatic feature extraction generally returns a high accuracy result. Lastly, Support Vector Machine (SVM) was our survey's most common ML classifier due to its lower computational complexity and solid mathematical theoretical basis. The purpose of this study was to collect and explore a sparsely populated sector of ML, and we hope that our survey has shined some light on the inherent trends, advantages, disadvantages, and preferences of the current state of machine learning-based EEG analysis for mTBI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pp发布了新的文献求助10
刚刚
1秒前
华仔应助maolao采纳,获得10
2秒前
顾矜应助马马采纳,获得10
4秒前
Akim应助时尚的飞机采纳,获得10
5秒前
da发布了新的文献求助10
5秒前
6秒前
脑洞疼应助hxl采纳,获得10
6秒前
qi发布了新的文献求助10
7秒前
领导范儿应助金滢采纳,获得10
8秒前
科研通AI2S应助嘟嘟采纳,获得10
9秒前
神勇的人雄完成签到,获得积分10
9秒前
9秒前
小蘑菇应助Umar采纳,获得10
10秒前
云行发布了新的文献求助10
11秒前
852应助oo采纳,获得10
13秒前
包包包包发布了新的文献求助10
14秒前
LLLnna完成签到,获得积分10
14秒前
赘婿应助勤奋胡萝卜采纳,获得10
15秒前
17秒前
古今奇观完成签到 ,获得积分10
18秒前
陈晶完成签到,获得积分10
21秒前
包包包包完成签到,获得积分10
21秒前
22秒前
25秒前
xslj发布了新的文献求助10
27秒前
27秒前
赘婿应助江水采纳,获得10
28秒前
打打应助无聊的炎彬采纳,获得10
29秒前
Lucas应助葡萄味的果茶采纳,获得10
29秒前
爱卿5271发布了新的文献求助10
29秒前
29秒前
小小肖发布了新的文献求助10
31秒前
33秒前
TillySss完成签到,获得积分10
34秒前
缥缈孤鸿影完成签到 ,获得积分10
34秒前
zzz完成签到,获得积分10
34秒前
adi发布了新的文献求助10
36秒前
qqwrv发布了新的文献求助10
37秒前
NexusExplorer应助小小肖采纳,获得10
39秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523746
关于积分的说明 11218449
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800495
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182