已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EEG Machine Learning for Analysis of Mild Traumatic Brain Injury: A survey

支持向量机 脑电图 人工智能 特征提取 计算机科学 机器学习 模式识别(心理学) 预处理器 数据预处理 心理学 精神科
作者
Wenling Gu,Ryan Chang,Bohan Yang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2208.08894
摘要

Mild Traumatic Brain Injury (mTBI) is a common brain injury and affects a diverse group of people: soldiers, constructors, athletes, drivers, children, elders, and nearly everyone. Thus, having a well-established, fast, cheap, and accurate classification method is crucial for the well-being of people around the globe. Luckily, using Machine Learning (ML) on electroencephalography (EEG) data shows promising results. This survey analyzed the most cutting-edge articles from 2017 to the present. The articles were searched from the Google Scholar database and went through an elimination process based on our criteria. We reviewed, summarized, and compared the fourteen most cutting-edge machine learning research papers for predicting and classifying mTBI in terms of 1) EEG data types, 2) data preprocessing methods, 3) machine learning feature representations, 4) feature extraction methods, and 5) machine learning classifiers and predictions. The most common EEG data type was human resting-state EEG, with most studies using filters to clean the data. The power spectral, especially alpha and theta power, was the most prevalent feature. The other non-power spectral features, such as entropy, also show their great potential. The Fourier transform is the most common feature extraction method while using neural networks as automatic feature extraction generally returns a high accuracy result. Lastly, Support Vector Machine (SVM) was our survey's most common ML classifier due to its lower computational complexity and solid mathematical theoretical basis. The purpose of this study was to collect and explore a sparsely populated sector of ML, and we hope that our survey has shined some light on the inherent trends, advantages, disadvantages, and preferences of the current state of machine learning-based EEG analysis for mTBI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
123完成签到,获得积分10
4秒前
木木夕云发布了新的文献求助10
4秒前
小二完成签到,获得积分10
6秒前
柯飞扬完成签到,获得积分10
7秒前
bailili完成签到,获得积分10
7秒前
7秒前
9秒前
799完成签到 ,获得积分10
10秒前
mealies完成签到 ,获得积分0
11秒前
13秒前
在水一方应助Alan采纳,获得10
13秒前
RONG完成签到 ,获得积分10
13秒前
15秒前
15秒前
YKX完成签到,获得积分10
15秒前
大力向南完成签到,获得积分10
16秒前
16秒前
852应助科研小白采纳,获得10
17秒前
爆米花应助坚强的云朵采纳,获得10
17秒前
17秒前
Akim应助jinyihao采纳,获得10
19秒前
21秒前
大力向南发布了新的文献求助10
21秒前
研友_8y2o0L发布了新的文献求助10
21秒前
23秒前
24秒前
windom完成签到,获得积分10
25秒前
beifa发布了新的文献求助10
25秒前
可可完成签到 ,获得积分10
26秒前
26秒前
小二发布了新的文献求助10
26秒前
科研小白完成签到,获得积分20
27秒前
研友_8y2o0L完成签到,获得积分10
27秒前
28秒前
犹豫梦菡完成签到 ,获得积分10
28秒前
小小鱼完成签到 ,获得积分10
29秒前
gao完成签到 ,获得积分10
29秒前
自己个儿发布了新的文献求助10
29秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925614
求助须知:如何正确求助?哪些是违规求助? 4195847
关于积分的说明 13031125
捐赠科研通 3967370
什么是DOI,文献DOI怎么找? 2174618
邀请新用户注册赠送积分活动 1191845
关于科研通互助平台的介绍 1101551