已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An ecological network approach for detecting and validating influential organisms for rice growth

水稻 生态学 农业 水田 生物 稻属 丰度(生态学) 生物技术 基因 生物化学
作者
Masayuki Ushio,Hiroki Saito,Motoaki Tojo,Atsushi J. Nagano
出处
期刊:eLife [eLife Sciences Publications, Ltd.]
卷期号:12 被引量:1
标识
DOI:10.7554/elife.87202
摘要

How to achieve sustainable food production while reducing environmental impacts is a major concern in agricultural science, and advanced breeding techniques are promising for achieving such goals. However, rice is usually grown under field conditions and influenced by surrounding ecological community members. How ecological communities influence the rice performance in the field has been underexplored despite the potential of ecological communities to establish an environment-friendly agricultural system. In the present study, we demonstrate an ecological-network-based approach to detect potentially influential, previously overlooked organisms for rice (Oryza sativa). First, we established small experimental rice plots, and measured rice growth and monitored ecological community dynamics intensively and extensively using quantitative environmental DNA metabarcoding in 2017 in Japan. We detected more than 1000 species (including microbes and macrobes such as insects) in the rice plots, and nonlinear time series analysis detected 52 potentially influential organisms with lower-level taxonomic information. The results of the time series analysis were validated under field conditions in 2019 by field manipulation experiments. In 2019, we focused on two species, Globisporangium nunn and Chironomus kiiensis, whose abundance was manipulated in artificial rice plots. The responses of rice, namely, the growth rate and gene expression patterns, were measured before and after the manipulation. We confirmed that, especially in the G. nunn-added treatment, rice growth rate and gene expression pattern were changed. In the present study, we demonstrated that intensive monitoring of an agricultural system and the application of nonlinear time series analysis were helpful to identify influential organisms under field conditions. Although the effects of the manipulations were relatively small, the research framework presented here has future potential to harness the ecological complexity and utilize it in agriculture. Our proof-of-concept study would be an important basis for the further development of field-basis system management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sh131完成签到,获得积分10
2秒前
Lmx发布了新的文献求助10
3秒前
me发布了新的文献求助10
3秒前
yxr发布了新的文献求助20
3秒前
geng完成签到 ,获得积分20
5秒前
7秒前
13秒前
13秒前
Ava应助带大眼珠子了没采纳,获得10
14秒前
14秒前
星辰大海应助Moon采纳,获得10
14秒前
16秒前
feng1235发布了新的文献求助10
17秒前
无私糖豆发布了新的文献求助10
17秒前
CodeCraft应助豆花采纳,获得10
18秒前
chen1314完成签到,获得积分10
20秒前
无聊的夜山完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
21秒前
结实的以莲完成签到,获得积分10
22秒前
22秒前
yyydmhsj完成签到 ,获得积分10
22秒前
23秒前
美满平松完成签到 ,获得积分10
24秒前
jueshadi完成签到 ,获得积分10
24秒前
烤冷面发布了新的文献求助10
25秒前
25秒前
科研通AI6.1应助yxr采纳,获得10
25秒前
科研通AI6.1应助pansy采纳,获得10
25秒前
26秒前
xx完成签到 ,获得积分10
26秒前
田様应助承乐采纳,获得10
27秒前
CipherSage应助Gideon采纳,获得10
28秒前
SCI硬通货完成签到 ,获得积分10
29秒前
能量球发布了新的文献求助20
30秒前
CodeCraft应助李先生采纳,获得10
31秒前
32秒前
Orange应助马克采纳,获得10
32秒前
lyncee发布了新的文献求助20
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763257
求助须知:如何正确求助?哪些是违规求助? 5539799
关于积分的说明 15404550
捐赠科研通 4899105
什么是DOI,文献DOI怎么找? 2635329
邀请新用户注册赠送积分活动 1583419
关于科研通互助平台的介绍 1538503