Natural bone tissue possesses inherent electrophysiological characteristics, displaying conductivity and piezoelectricity simultaneously; hence, the reconstruction of local electrical microenvironment at defect site provides an effective strategy to enhance osteogenesis. Herein, a composite cryogel-type scaffold (referred to as Gel-PD-CMBT) is developed for bone regeneration, utilizing gelatin (Gel) in combination with a conductive poly(ethylene dioxythiophene)/polystyrene sulfonate matrix and Ca/Mn co-doped barium titanate (CMBT) nanofibers as the piezoelectric filler. The incorporation of these components results in the formation of an integrated piezoelectric/conductive network within the scaffold, facilitating charge migration and yielding a conductivity of 0.59 S cm-1 . This conductive scaffold creates a promising electroactive microenvironment, which is capable of up-regulating biological responses. Furthermore, the interconnected porous structure of the Gel-PD-CMBT scaffold not only provides mechanical stability but also offered ample space for cellular and tissue ingrowth. This Gel-PD-CMBT scaffold demonstrates a greater capacity to promote cellular osteogenic differentiation in vitro and neo-bone formation in vivo. In summary, the Gel-PD-CMBT scaffold, with its integrated piezoelectricity and conductivity, effectively restores the local electroactive microenvironment, offering an ideal platform for the regeneration of electrophysiological bone tissue.