Factors affecting phase change in coupling coordination between population, crop yield, and soil erosion in China’s 281 cities

人口 农业 产量(工程) 腐蚀 农业生产力 中国 环境科学 业务 自然资源经济学 地理 农业工程 农业经济学 经济 工程类 地质学 人口学 社会学 古生物学 考古 冶金 材料科学
作者
Jingyu Wang,Zhen Wang,Keke Li,Cai Li,Wen Fang,Zhihua Shi
出处
期刊:Land Use Policy [Elsevier]
卷期号:132: 106761-106761 被引量:12
标识
DOI:10.1016/j.landusepol.2023.106761
摘要

Soil erosion in cropland areas is mainly influenced by agricultural activities and natural conditions. Previous studies have largely focused on the biophysical processes or economic drivers of soil erosion. There have been few attempts to balance the impacts of population, agricultural production, and soil erosion to address the global socioecological predicament facing cropland. We combined the coupling coordination degree model (CCDM) with the Shapley additive explanations (SHAP) method to evaluate the coupling coordination level between population demand, agricultural production, and soil erosion as well as the influence of socioeconomic factors in 281 Chinese cities for the period from 1995 to 2010. Coupling between population, crop yield, and soil erosion was generally moderate across China during 1995–2010. Cities with a GDP in the range of 4.42–241.54 billion could fall into different coupling coordination phases that were identified by K-means clustering. The SHAP results showed that GDP and population density were the most important factors influencing the coordination level, while industrial structure was the key determinant that distinguished the different phases in cities with a similar economic status. Building on research on the evolutionary aspects of system coupling coordination, our study reveals for the first time the probable causes of changes in system coupling coordination via machine learning algorithms, providing a reference for future investigations. Our findings also provide a basis for developing policy recommendations to balance social demands, agriculture, and environmental protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水獭发布了新的文献求助10
刚刚
奥雷里亚诺的小金鱼完成签到,获得积分10
刚刚
刚刚
LZZ发布了新的文献求助10
刚刚
昵称发布了新的文献求助10
1秒前
认真的一刀发布了新的文献求助200
1秒前
Lin发布了新的文献求助10
1秒前
杨燕华完成签到,获得积分10
1秒前
pxy完成签到,获得积分10
2秒前
3秒前
3秒前
...完成签到,获得积分10
3秒前
tfsn20完成签到,获得积分0
3秒前
程程完成签到 ,获得积分10
3秒前
彪壮的明轩完成签到,获得积分10
3秒前
夏夏发布了新的文献求助10
4秒前
西子阳发布了新的文献求助10
4秒前
xf完成签到,获得积分10
4秒前
MrCoolWu发布了新的文献求助10
4秒前
qq应助zjudxn采纳,获得10
5秒前
5秒前
整齐的千万完成签到 ,获得积分10
5秒前
liu完成签到,获得积分10
6秒前
笨笨球发布了新的文献求助10
7秒前
9秒前
包容的剑发布了新的文献求助10
9秒前
SS驳回了ding应助
9秒前
星辰大海应助ZY采纳,获得10
9秒前
丘比特应助鲜艳的棒棒糖采纳,获得10
9秒前
10秒前
11秒前
曾经耳机完成签到 ,获得积分10
11秒前
rain完成签到 ,获得积分10
11秒前
讲道理的卡卡完成签到 ,获得积分10
11秒前
水獭完成签到,获得积分10
11秒前
12秒前
12秒前
快乐滑板完成签到,获得积分0
12秒前
白小白发布了新的文献求助10
13秒前
陈淑玲完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762