Tuning Bienenstock–Cooper–Munro learning rules in a two-terminal memristor for neuromorphic computing

神经形态工程学 记忆电阻器 人工智能 门控 计算机科学 学习规律 调制(音乐) 材料科学 机器学习 电子工程 物理 人工神经网络 工程类 神经科学 生物 声学
作者
Zeyang Li,Peilin Liu,Guanghong Yang,Caihong Jia,Weifeng Zhang
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
卷期号:25 (23): 15920-15928 被引量:1
标识
DOI:10.1039/d3cp01134h
摘要

In memristors, the implementation of the Bienenstock-Cooper-Munro (BCM) learning rule plays a significant role in the modulation balance of artificial synapses and the reduction of energy consumption owing to their sliding frequency threshold. At present, the BCM learning rule is mostly achieved by adjusting gating voltage or channel current in field effect transistors. However, owing to the lack of the tunable degrees of freedom, the progress of two-terminal memristors is limited to simulating the BCM learning rule. In this study, by adjusting the series resistance, three types of BCM-like learning rules are found in a two-terminal BaTiO3 memristor. Specifically, the abnormal BCM learning rule with high-frequency depression and low-frequency potentiation is obtained for a small series resistance, the monotonous BCM learning rule with high-frequency potentiation and low-frequency depression is achieved for a large series resistance, and the type of BCM learning rule with the enhanced depression effect is obtained for a moderate series resistance. These three BCM learning rules are related to the non-monotonous conductance modulation caused by the migration of ionized oxygen vacancies and are proved by X-ray photoelectron spectroscopy. Moreover, spike rate-dependent plasticity (SRDP) and history-dependent plasticity are achieved. This study offers promising prospects for neuromorphic computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
数学情缘发布了新的文献求助10
刚刚
Glorious完成签到,获得积分10
刚刚
刚刚
夏侯夏侯完成签到 ,获得积分10
刚刚
打打应助zz采纳,获得10
1秒前
拼搏亦松发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
如如要动完成签到,获得积分10
2秒前
卡卡西应助星宇采纳,获得50
3秒前
贪玩飞机发布了新的文献求助10
3秒前
太阳完成签到,获得积分10
3秒前
脑洞疼应助Li采纳,获得10
4秒前
hutian完成签到,获得积分10
4秒前
4秒前
5秒前
默默荔枝完成签到 ,获得积分10
5秒前
SYLH应助打工人采纳,获得10
5秒前
王w完成签到,获得积分10
5秒前
SYLH应助wen采纳,获得10
6秒前
bkagyin应助夏梦园采纳,获得10
6秒前
如如要动发布了新的文献求助200
6秒前
7秒前
FFFFFFG完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
sigla发布了新的文献求助10
10秒前
wss完成签到,获得积分10
10秒前
跳跃忆灵完成签到,获得积分10
10秒前
左凝阳发布了新的文献求助10
10秒前
风中幻梦发布了新的文献求助10
11秒前
11秒前
11秒前
SYLH应助飞云采纳,获得10
11秒前
研友_VZG7GZ应助疗效采纳,获得10
12秒前
12秒前
12秒前
一朵梅花完成签到,获得积分10
14秒前
15秒前
monoklatt发布了新的文献求助30
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970120
求助须知:如何正确求助?哪些是违规求助? 3514810
关于积分的说明 11176124
捐赠科研通 3250136
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875647
科研通“疑难数据库(出版商)”最低求助积分说明 804964