Development of a prediction model for the risk of 30-day unplanned readmission in older patients with heart failure: A multicenter retrospective study

医学 心理干预 心力衰竭 超参数优化 接收机工作特性 入射(几何) 急诊医学 风险评估 超参数 内科学 机器学习 计算机科学 支持向量机 计算机安全 精神科 光学 物理
作者
Yang Zhang,Haolin Wang,Chengliang Yin,Tingting Shu,Jie Yu,Jie Jian,Jian Chang,Minjie Duan,Kaisaierjiang Kadier,Qian Xu,Xueer Wang,Tianyu Xiang,Xiaozhu Liu
出处
期刊:Nutrition Metabolism and Cardiovascular Diseases [Elsevier]
卷期号:33 (10): 1878-1887 被引量:6
标识
DOI:10.1016/j.numecd.2023.05.034
摘要

Heart failure (HF) imposes significant global health costs due to its high incidence, readmission, and mortality rate. Accurate assessment of readmission risk and precise interventions have become important measures to improve health for patients with HF. Therefore, this study aimed to develop a machine learning (ML) model to predict 30-day unplanned readmissions in older patients with HF.This study collected data on hospitalized older patients with HF from the medical data platform of Chongqing Medical University from January 1, 2012, to December 31, 2021. A total of 5 candidate algorithms were selected from 15 ML algorithms with excellent performance, which was evaluated by area under the operating characteristic curve (AUC) and accuracy. Then, the 5 candidate algorithms were hyperparameter tuned by 5-fold cross-validation grid search, and performance was evaluated by AUC, accuracy, sensitivity, specificity, and recall. Finally, an optimal ML model was constructed, and the predictive results were explained using the SHapley Additive exPlanations (SHAP) framework. A total of 14,843 older patients with HF were consecutively enrolled. CatBoost model was selected as the best prediction model, and AUC was 0.732, with 0.712 accuracy, 0.619 sensitivity, and 0.722 specificity. NT.proBNP, length of stay (LOS), triglycerides, blood phosphorus, blood potassium, and lactate dehydrogenase had the greatest effect on 30-day unplanned readmission in older patients with HF, according to SHAP results.The study developed a CatBoost model to predict the risk of unplanned 30-day special-cause readmission in older patients with HF, which showed more significant performance compared with the traditional logistic regression model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fortune发布了新的文献求助10
1秒前
6秒前
傻傻的哈密瓜完成签到,获得积分10
6秒前
森婕完成签到 ,获得积分10
7秒前
7秒前
cardiology完成签到,获得积分10
8秒前
yxfhenu发布了新的文献求助10
11秒前
清风完成签到 ,获得积分10
11秒前
chenzhi发布了新的文献求助10
19秒前
20秒前
21秒前
22秒前
24秒前
思源应助英吉利25采纳,获得10
25秒前
Kenzonvay发布了新的文献求助10
26秒前
Luna完成签到 ,获得积分10
28秒前
汉堡包应助chenzhi采纳,获得10
31秒前
充电宝应助dd99081采纳,获得10
32秒前
32秒前
花花完成签到 ,获得积分10
34秒前
34秒前
老谢发布了新的文献求助10
35秒前
check003完成签到,获得积分10
35秒前
fortune完成签到,获得积分10
36秒前
彳亍完成签到,获得积分10
38秒前
39秒前
41秒前
Lin完成签到,获得积分10
42秒前
42秒前
斯文败类应助乐观鑫鹏采纳,获得10
44秒前
浮游应助LHP采纳,获得10
45秒前
Lulul发布了新的文献求助10
46秒前
bai完成签到,获得积分10
46秒前
十一玮发布了新的文献求助10
47秒前
xdmhv完成签到,获得积分10
51秒前
52秒前
Akim应助Tian采纳,获得10
54秒前
水水的完成签到 ,获得积分10
56秒前
球球尧伞耳完成签到,获得积分10
59秒前
John完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645588
关于积分的说明 14675693
捐赠科研通 4586757
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460969