亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a prediction model for the risk of 30-day unplanned readmission in older patients with heart failure: A multicenter retrospective study

医学 心理干预 心力衰竭 超参数优化 接收机工作特性 入射(几何) 急诊医学 风险评估 超参数 内科学 机器学习 计算机科学 支持向量机 计算机安全 精神科 光学 物理
作者
Yang Zhang,Haolin Wang,Chengliang Yin,Tingting Shu,Jie Yu,Jie Jian,Jian Chang,Minjie Duan,Kaisaierjiang Kadier,Qian Xu,Xueer Wang,Tianyu Xiang,Xiaozhu Liu
出处
期刊:Nutrition Metabolism and Cardiovascular Diseases [Elsevier]
卷期号:33 (10): 1878-1887 被引量:6
标识
DOI:10.1016/j.numecd.2023.05.034
摘要

Heart failure (HF) imposes significant global health costs due to its high incidence, readmission, and mortality rate. Accurate assessment of readmission risk and precise interventions have become important measures to improve health for patients with HF. Therefore, this study aimed to develop a machine learning (ML) model to predict 30-day unplanned readmissions in older patients with HF.This study collected data on hospitalized older patients with HF from the medical data platform of Chongqing Medical University from January 1, 2012, to December 31, 2021. A total of 5 candidate algorithms were selected from 15 ML algorithms with excellent performance, which was evaluated by area under the operating characteristic curve (AUC) and accuracy. Then, the 5 candidate algorithms were hyperparameter tuned by 5-fold cross-validation grid search, and performance was evaluated by AUC, accuracy, sensitivity, specificity, and recall. Finally, an optimal ML model was constructed, and the predictive results were explained using the SHapley Additive exPlanations (SHAP) framework. A total of 14,843 older patients with HF were consecutively enrolled. CatBoost model was selected as the best prediction model, and AUC was 0.732, with 0.712 accuracy, 0.619 sensitivity, and 0.722 specificity. NT.proBNP, length of stay (LOS), triglycerides, blood phosphorus, blood potassium, and lactate dehydrogenase had the greatest effect on 30-day unplanned readmission in older patients with HF, according to SHAP results.The study developed a CatBoost model to predict the risk of unplanned 30-day special-cause readmission in older patients with HF, which showed more significant performance compared with the traditional logistic regression model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pocky发布了新的文献求助10
3秒前
追风少年完成签到,获得积分0
4秒前
YYYYY发布了新的文献求助10
9秒前
洁净乌冬面完成签到 ,获得积分10
13秒前
cy完成签到,获得积分20
14秒前
cy发布了新的文献求助10
16秒前
18秒前
尊敬的萝莉完成签到,获得积分10
18秒前
汉堡包应助Mr采纳,获得10
18秒前
煲仔饭发布了新的文献求助10
19秒前
852应助危机的盼晴采纳,获得10
21秒前
Kevin完成签到 ,获得积分10
22秒前
Lucas应助cy采纳,获得10
22秒前
luster发布了新的文献求助10
24秒前
huhaha完成签到,获得积分10
25秒前
26秒前
huhaha发布了新的文献求助10
29秒前
30秒前
闲鱼电脑完成签到,获得积分10
34秒前
qiyan完成签到,获得积分10
36秒前
oleskarabach发布了新的文献求助10
38秒前
喜悦的如娆完成签到,获得积分10
39秒前
42秒前
张豪完成签到 ,获得积分10
42秒前
mushroom关注了科研通微信公众号
44秒前
一个西藏发布了新的文献求助10
46秒前
Mr完成签到,获得积分10
46秒前
Mr发布了新的文献求助10
49秒前
天天快乐应助科研通管家采纳,获得20
50秒前
山亭应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
51秒前
53秒前
maoaq完成签到 ,获得积分10
54秒前
57秒前
59秒前
1分钟前
1分钟前
mushroom发布了新的文献求助10
1分钟前
yy完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345529
求助须知:如何正确求助?哪些是违规求助? 4480441
关于积分的说明 13946306
捐赠科研通 4377975
什么是DOI,文献DOI怎么找? 2405510
邀请新用户注册赠送积分活动 1398115
关于科研通互助平台的介绍 1370519