亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a prediction model for the risk of 30-day unplanned readmission in older patients with heart failure: A multicenter retrospective study

医学 心理干预 心力衰竭 超参数优化 接收机工作特性 入射(几何) 急诊医学 风险评估 超参数 内科学 机器学习 计算机科学 支持向量机 计算机安全 精神科 光学 物理
作者
Yang Zhang,Haolin Wang,Chengliang Yin,Tingting Shu,Jie Yu,Jie Jian,Jian Chang,Minjie Duan,Kaisaierjiang Kadier,Qian Xu,Xueer Wang,Tianyu Xiang,Xiaozhu Liu
出处
期刊:Nutrition Metabolism and Cardiovascular Diseases [Elsevier]
卷期号:33 (10): 1878-1887 被引量:6
标识
DOI:10.1016/j.numecd.2023.05.034
摘要

Heart failure (HF) imposes significant global health costs due to its high incidence, readmission, and mortality rate. Accurate assessment of readmission risk and precise interventions have become important measures to improve health for patients with HF. Therefore, this study aimed to develop a machine learning (ML) model to predict 30-day unplanned readmissions in older patients with HF.This study collected data on hospitalized older patients with HF from the medical data platform of Chongqing Medical University from January 1, 2012, to December 31, 2021. A total of 5 candidate algorithms were selected from 15 ML algorithms with excellent performance, which was evaluated by area under the operating characteristic curve (AUC) and accuracy. Then, the 5 candidate algorithms were hyperparameter tuned by 5-fold cross-validation grid search, and performance was evaluated by AUC, accuracy, sensitivity, specificity, and recall. Finally, an optimal ML model was constructed, and the predictive results were explained using the SHapley Additive exPlanations (SHAP) framework. A total of 14,843 older patients with HF were consecutively enrolled. CatBoost model was selected as the best prediction model, and AUC was 0.732, with 0.712 accuracy, 0.619 sensitivity, and 0.722 specificity. NT.proBNP, length of stay (LOS), triglycerides, blood phosphorus, blood potassium, and lactate dehydrogenase had the greatest effect on 30-day unplanned readmission in older patients with HF, according to SHAP results.The study developed a CatBoost model to predict the risk of unplanned 30-day special-cause readmission in older patients with HF, which showed more significant performance compared with the traditional logistic regression model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
25秒前
36秒前
时间煮雨我煮鱼完成签到,获得积分10
53秒前
你嵙这个期刊没买完成签到 ,获得积分10
55秒前
59秒前
GingerF应助Jsihao采纳,获得50
1分钟前
NiNi完成签到 ,获得积分10
1分钟前
babbybai发布了新的文献求助10
1分钟前
脑洞疼应助Jsihao采纳,获得10
1分钟前
搜集达人应助Jsihao采纳,获得10
1分钟前
1分钟前
楠楠2001完成签到 ,获得积分10
1分钟前
cc完成签到,获得积分10
1分钟前
袁青寒完成签到,获得积分10
2分钟前
布吉岛应助口岸是你采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
研友_LkD29n完成签到 ,获得积分10
3分钟前
于戏完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
5分钟前
桥西小河完成签到 ,获得积分10
5分钟前
a3265640发布了新的文献求助20
6分钟前
ding应助风中巧曼采纳,获得10
6分钟前
Kevin完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
风中巧曼发布了新的文献求助10
6分钟前
bkagyin应助a3265640采纳,获得10
6分钟前
幽默白秋发布了新的文献求助10
6分钟前
6分钟前
orixero应助幽默白秋采纳,获得10
6分钟前
生动的豆芽完成签到 ,获得积分10
6分钟前
风中巧曼完成签到,获得积分20
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407910
求助须知:如何正确求助?哪些是违规求助? 4525355
关于积分的说明 14101684
捐赠科研通 4439234
什么是DOI,文献DOI怎么找? 2436668
邀请新用户注册赠送积分活动 1428628
关于科研通互助平台的介绍 1406729