清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development of a prediction model for the risk of 30-day unplanned readmission in older patients with heart failure: A multicenter retrospective study

医学 心理干预 心力衰竭 超参数优化 接收机工作特性 入射(几何) 急诊医学 风险评估 超参数 内科学 机器学习 计算机科学 支持向量机 计算机安全 精神科 光学 物理
作者
Yang Zhang,Haolin Wang,Chengliang Yin,Tingting Shu,Jie Yu,Jie Jian,Jian Chang,Minjie Duan,Kaisaierjiang Kadier,Qian Xu,Xueer Wang,Tianyu Xiang,Xiaozhu Liu
出处
期刊:Nutrition Metabolism and Cardiovascular Diseases [Elsevier]
卷期号:33 (10): 1878-1887 被引量:8
标识
DOI:10.1016/j.numecd.2023.05.034
摘要

Heart failure (HF) imposes significant global health costs due to its high incidence, readmission, and mortality rate. Accurate assessment of readmission risk and precise interventions have become important measures to improve health for patients with HF. Therefore, this study aimed to develop a machine learning (ML) model to predict 30-day unplanned readmissions in older patients with HF.This study collected data on hospitalized older patients with HF from the medical data platform of Chongqing Medical University from January 1, 2012, to December 31, 2021. A total of 5 candidate algorithms were selected from 15 ML algorithms with excellent performance, which was evaluated by area under the operating characteristic curve (AUC) and accuracy. Then, the 5 candidate algorithms were hyperparameter tuned by 5-fold cross-validation grid search, and performance was evaluated by AUC, accuracy, sensitivity, specificity, and recall. Finally, an optimal ML model was constructed, and the predictive results were explained using the SHapley Additive exPlanations (SHAP) framework. A total of 14,843 older patients with HF were consecutively enrolled. CatBoost model was selected as the best prediction model, and AUC was 0.732, with 0.712 accuracy, 0.619 sensitivity, and 0.722 specificity. NT.proBNP, length of stay (LOS), triglycerides, blood phosphorus, blood potassium, and lactate dehydrogenase had the greatest effect on 30-day unplanned readmission in older patients with HF, according to SHAP results.The study developed a CatBoost model to predict the risk of unplanned 30-day special-cause readmission in older patients with HF, which showed more significant performance compared with the traditional logistic regression model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
BowieHuang应助科研通管家采纳,获得10
12秒前
激动的似狮完成签到,获得积分10
27秒前
45秒前
尤里有气发布了新的文献求助10
52秒前
RC发布了新的文献求助10
56秒前
tt完成签到,获得积分10
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
2分钟前
MTF完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
赘婿应助moonsea0415采纳,获得10
3分钟前
任性的紫翠完成签到,获得积分10
3分钟前
活泼雪碧完成签到 ,获得积分10
3分钟前
3分钟前
moonsea0415发布了新的文献求助10
3分钟前
moonsea0415完成签到,获得积分10
4分钟前
Joins_Su完成签到 ,获得积分10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
4分钟前
Kevin发布了新的文献求助10
4分钟前
大个应助紧张的铃铛采纳,获得10
4分钟前
4分钟前
尤里有气发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
zakaria完成签到,获得积分10
5分钟前
紧张的铃铛完成签到,获得积分10
5分钟前
科研通AI6应助紧张的铃铛采纳,获得80
5分钟前
merrylake完成签到 ,获得积分10
6分钟前
6分钟前
Akim应助重庆森林采纳,获得30
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590568
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633472
什么是DOI,文献DOI怎么找? 2532825
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468723