Learning to Purification for Unsupervised Person Re-Identification

计算机科学 人工智能 无监督学习 特征学习 判别式 机器学习 杠杆(统计) 特征(语言学) 模式识别(心理学) 水准点(测量) 鉴定(生物学) 噪音(视频) 图像(数学) 哲学 语言学 植物 大地测量学 生物 地理
作者
Long Lan,Xiao Teng,Jing Zhang,Xiang Zhang,Dacheng Tao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 3338-3353 被引量:37
标识
DOI:10.1109/tip.2023.3278860
摘要

Unsupervised person re-identification is a challenging and promising task in computer vision. Nowadays unsupervised person re-identification methods have achieved great progress by training with pseudo labels. However, how to purify feature and label noise is less explicitly studied in the unsupervised manner. To purify the feature, we take into account two types of additional features from different local views to enrich the feature representation. The proposed multi-view features are carefully integrated into our cluster contrast learning to leverage more discriminative cues that the global feature easily ignored and biased. To purify the label noise, we propose to take advantage of the knowledge of teacher model in an offline scheme. Specifically, we first train a teacher model from noisy pseudo labels, and then use the teacher model to guide the learning of our student model. In our setting, the student model could converge fast with the supervision of the teacher model thus reduce the interference of noisy labels as the teacher model greatly suffered. After carefully handling the noise and bias in the feature learning, our purification modules are proven to be very effective for unsupervised person re-identification. Extensive experiments on three popular person re-identification datasets demonstrate the superiority of our method. Especially, our approach achieves a state-of-the-art accuracy 85.8\% @mAP and 94.5\% @Rank-1 on the challenging Market-1501 benchmark with ResNet-50 under the fully unsupervised setting. The code will be released.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
动漫大师发布了新的文献求助10
1秒前
JamesPei应助yu采纳,获得10
3秒前
nini完成签到,获得积分20
4秒前
batmanrobin完成签到,获得积分10
4秒前
qqshown发布了新的文献求助10
4秒前
maox1aoxin应助Rita采纳,获得30
5秒前
SunGuoping完成签到,获得积分20
7秒前
wzb完成签到,获得积分10
11秒前
12秒前
小辣椒发布了新的文献求助10
12秒前
橙子慢慢来完成签到,获得积分10
12秒前
14秒前
领导范儿应助霸气凡白采纳,获得10
16秒前
一只小羊完成签到,获得积分10
16秒前
weige完成签到,获得积分10
16秒前
Daydayup发布了新的文献求助20
17秒前
Xuech发布了新的文献求助10
18秒前
Sean完成签到 ,获得积分10
18秒前
畅快大象完成签到,获得积分10
19秒前
善学以致用应助Brian采纳,获得10
19秒前
LexMz应助Qinghua采纳,获得10
21秒前
25秒前
IlIIlIlIIIllI完成签到,获得积分10
26秒前
幸福大白发布了新的文献求助10
29秒前
Rue发布了新的文献求助10
29秒前
30秒前
31秒前
31秒前
慕青应助Gao_Z_X采纳,获得20
31秒前
科研通AI5应助Xuech采纳,获得10
33秒前
33秒前
Brian发布了新的文献求助10
35秒前
余姓懒完成签到,获得积分10
36秒前
柏风华发布了新的文献求助10
36秒前
yu发布了新的文献求助10
38秒前
38秒前
思源应助Rue采纳,获得10
39秒前
李健应助yu采纳,获得10
43秒前
詩翰发布了新的文献求助10
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673942
求助须知:如何正确求助?哪些是违规求助? 3229353
关于积分的说明 9785517
捐赠科研通 2939954
什么是DOI,文献DOI怎么找? 1611513
邀请新用户注册赠送积分活动 760978
科研通“疑难数据库(出版商)”最低求助积分说明 736344