Computational Discovery of Stable Metal–Organic Frameworks for Methane-to-Methanol Catalysis

化学 甲醇 催化作用 甲烷 金属有机骨架 小型商用车 配体(生物化学) 纳米材料基催化剂 催化循环 甲烷厌氧氧化 格式化 物理化学 有机化学 生物化学 吸附 受体
作者
Husain Adamji,Aditya Nandy,Ilia Kevlishvili,Yuriy Román‐Leshkov,Heather J. Kulik
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (26): 14365-14378 被引量:19
标识
DOI:10.1021/jacs.3c03351
摘要

The challenge of direct partial oxidation of methane to methanol has motivated the targeted search of metal–organic frameworks (MOFs) as a promising class of materials for this transformation because of their site-isolated metals with tunable ligand environments. Thousands of MOFs have been synthesized, yet relatively few have been screened for their promise in methane conversion. We developed a high-throughput virtual screening workflow that identifies MOFs from a diverse space of experimental MOFs that have not been studied for catalysis, yet are thermally stable, synthesizable, and have promising unsaturated metal sites for C–H activation via a terminal metal-oxo species. We carried out density functional theory calculations of the radical rebound mechanism for methane-to-methanol conversion on models of the secondary building units (SBUs) from 87 selected MOFs. While we showed that oxo formation favorability decreases with increasing 3d filling, consistent with prior work, previously observed scaling relations between oxo formation and hydrogen atom transfer (HAT) are disrupted by the greater diversity in our MOF set. Accordingly, we focused on Mn MOFs, which favor oxo intermediates without disfavoring HAT or leading to high methanol release energies─a key feature for methane hydroxylation activity. We identified three Mn MOFs comprising unsaturated Mn centers bound to weak-field carboxylate ligands in planar or bent geometries with promising methane-to-methanol kinetics and thermodynamics. The energetic spans of these MOFs are indicative of promising turnover frequencies for methane to methanol that warrant further experimental catalytic studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
kevin完成签到,获得积分10
1秒前
跳跃凡桃发布了新的文献求助10
2秒前
小马甲应助zjw采纳,获得10
2秒前
大鸣王潮完成签到,获得积分10
3秒前
钻石发布了新的文献求助10
3秒前
星辰大海应助椿上春树采纳,获得10
3秒前
秋慕蕊发布了新的文献求助10
3秒前
远方有个少年完成签到,获得积分10
3秒前
andy发布了新的文献求助30
3秒前
Abi发布了新的文献求助10
4秒前
李健应助曦子曦子采纳,获得10
4秒前
上官若男应助听话的亦云采纳,获得10
4秒前
大个应助kevin采纳,获得10
5秒前
zhangpeng发布了新的文献求助10
5秒前
徐biao发布了新的文献求助10
5秒前
Hello应助Damon采纳,获得10
5秒前
6秒前
6秒前
大鸣王潮发布了新的文献求助10
7秒前
7秒前
7秒前
秋暝寒衣发布了新的文献求助10
7秒前
Lds完成签到 ,获得积分10
7秒前
8秒前
科研通AI2S应助jjj采纳,获得10
8秒前
8秒前
9秒前
9秒前
ustina完成签到,获得积分10
10秒前
10秒前
23发布了新的文献求助10
10秒前
Owen应助Re采纳,获得10
11秒前
RoyKu完成签到,获得积分10
11秒前
领导范儿应助机灵的冰夏采纳,获得10
11秒前
霜月十四发布了新的文献求助30
11秒前
12秒前
白白白发布了新的文献求助10
12秒前
尊敬惜雪发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246