Electricity price forecasting in New Zealand: A comparative analysis of statistical and machine learning models with feature selection

特征选择 Lasso(编程语言) 水准点(测量) 机器学习 电价预测 人工智能 特征(语言学) 计算机科学 选型 计量经济学 预测建模 电力市场 选择(遗传算法) 经济 工程类 地理 语言学 哲学 万维网 电气工程 大地测量学
作者
Gaurav Kapoor,Nuttanan Wichitaksorn
出处
期刊:Applied Energy [Elsevier]
卷期号:347: 121446-121446 被引量:25
标识
DOI:10.1016/j.apenergy.2023.121446
摘要

In this study, we present an empirical comparison of statistical models and machine learning models for daily electricity price forecasting in the New Zealand electricity market. We demonstrate the effectiveness of GARCH and SV models and their t-distribution variants when paired with feature selection techniques, including LASSO, mutual information, and recursive feature elimination. A key aspect of our study is the inclusion of a diverse set of explanatory variables in all models. We compare these models against a range of popular machine learning models, including LSTM, GRU, XGBoost, LEAR, and a four-layer DNN, where the latter two are considered benchmarks. Our results reveal that GARCH and SV models, particularly their t variants, perform exceptionally well when paired with feature selection techniques and explanatory variables. In most scenarios considered, these models outperform machine learning models when coupled with LASSO feature selection. This contribution provides a comprehensive evaluation of the performance of different models and feature selection techniques for electricity price forecasting in the New Zealand electricity market. Our best-performing model improves the symmetric mean absolute percentage error (sMAPE) and mean absolute scaled error (MASE) by 2% to 3% over the LEAR benchmark model, highlighting the practical relevance of our findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无聊的翠芙完成签到,获得积分10
刚刚
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
wjj发布了新的文献求助10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
彭于晏应助鱼与树采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
Orange应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
xiuxiu_27发布了新的文献求助10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
猪猪hero发布了新的文献求助10
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得30
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
剑兰先生应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
Gaoge发布了新的文献求助10
4秒前
kimoto完成签到 ,获得积分10
5秒前
Tsuki完成签到,获得积分10
5秒前
5秒前
孙瞳完成签到,获得积分10
5秒前
小池同学完成签到,获得积分10
6秒前
JamesPei应助大白采纳,获得10
6秒前
mi发布了新的文献求助10
7秒前
小夭完成签到,获得积分10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678