Stock ranking prediction using a graph aggregation network based on stock price and stock relationship information

库存(枪支) 计算机科学 计量经济学 波动性(金融) 经济 机械工程 工程类
作者
Guowei Song,Tianlong Zhao,Suwei Wang,Hua Wang,Xuemei Li
出处
期刊:Information Sciences [Elsevier]
卷期号:643: 119236-119236 被引量:14
标识
DOI:10.1016/j.ins.2023.119236
摘要

The volatility of stock prices makes it difficult to predict stock price trends correctly. This volatility is affected by many factors, including other stocks related to it. Stock prediction based on graph learning uses various graph neural networks to learn how stocks interact to provide more information. However, they tend to adopt statically defined stock relations based on prior knowledge (such as industry relations and Wiki relations), making it difficult to capture the interplay between stocks over time. In addition, their predictions mostly rely on a single stock relationship, while many types of stock relationships affect the volatility of stock prices in a complex and intertwined manner. A new price similarity relation graph is first constructed using the multi-view stock price similarity to capture dynamic stock relationships. Based on three stock graphs (price similarity, Wiki and industry), we further propose a multi-relational graph attention ranking (MGAR) network. In MGAR, the multi-graph aggregation is achieved by applying adaptive learning mechanisms, thereby forming effective relation embeddings. When combined with the captured price trend embedding, MGAR model gives a ranking list of future returns and chooses K stocks with the best returns to trade so that the return on investment is maximized. Extensive experiments demonstrate that MGAR method outperforms state-of-the-art stock predicting solutions, achieving average returns of 164% and 236% on two real datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lihaifeng完成签到,获得积分10
2秒前
Aaernan完成签到 ,获得积分10
3秒前
科研通AI2S应助666采纳,获得10
3秒前
3秒前
3秒前
4秒前
缓慢冬莲发布了新的文献求助10
4秒前
今后应助minrui采纳,获得10
4秒前
Wududu完成签到,获得积分10
6秒前
Hedone发布了新的文献求助30
6秒前
7秒前
宋嘉新发布了新的文献求助10
10秒前
10秒前
zhangwei应助梓ccc采纳,获得10
11秒前
奋斗夏真完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
13秒前
缓慢小熊猫完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
Jase发布了新的文献求助10
15秒前
缓慢冬莲完成签到,获得积分10
16秒前
16秒前
16秒前
飞哥发布了新的文献求助10
18秒前
奋斗夏真发布了新的文献求助10
18秒前
woyufengtian完成签到,获得积分10
19秒前
风中画板完成签到,获得积分10
19秒前
minrui发布了新的文献求助10
19秒前
儒雅的翎完成签到,获得积分10
20秒前
21秒前
21秒前
乔宇发布了新的文献求助10
22秒前
22秒前
23秒前
动人的蝴蝶完成签到,获得积分20
25秒前
852应助自然的钻石采纳,获得10
26秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147903
求助须知:如何正确求助?哪些是违规求助? 2798930
关于积分的说明 7832525
捐赠科研通 2455943
什么是DOI,文献DOI怎么找? 1307025
科研通“疑难数据库(出版商)”最低求助积分说明 627966
版权声明 601587