Stock ranking prediction using a graph aggregation network based on stock price and stock relationship information

库存(枪支) 计算机科学 计量经济学 波动性(金融) 经济 机械工程 工程类
作者
Guowei Song,Tianlong Zhao,Suwei Wang,Hua Wang,Xuemei Li
出处
期刊:Information Sciences [Elsevier BV]
卷期号:643: 119236-119236 被引量:14
标识
DOI:10.1016/j.ins.2023.119236
摘要

The volatility of stock prices makes it difficult to predict stock price trends correctly. This volatility is affected by many factors, including other stocks related to it. Stock prediction based on graph learning uses various graph neural networks to learn how stocks interact to provide more information. However, they tend to adopt statically defined stock relations based on prior knowledge (such as industry relations and Wiki relations), making it difficult to capture the interplay between stocks over time. In addition, their predictions mostly rely on a single stock relationship, while many types of stock relationships affect the volatility of stock prices in a complex and intertwined manner. A new price similarity relation graph is first constructed using the multi-view stock price similarity to capture dynamic stock relationships. Based on three stock graphs (price similarity, Wiki and industry), we further propose a multi-relational graph attention ranking (MGAR) network. In MGAR, the multi-graph aggregation is achieved by applying adaptive learning mechanisms, thereby forming effective relation embeddings. When combined with the captured price trend embedding, MGAR model gives a ranking list of future returns and chooses K stocks with the best returns to trade so that the return on investment is maximized. Extensive experiments demonstrate that MGAR method outperforms state-of-the-art stock predicting solutions, achieving average returns of 164% and 236% on two real datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助年轻的冷雁采纳,获得10
刚刚
1秒前
1秒前
马慧敏发布了新的文献求助10
1秒前
SisiZheng完成签到,获得积分10
2秒前
3秒前
小林发布了新的文献求助10
4秒前
5秒前
在水一方应助淡淡紫山采纳,获得10
5秒前
KA发布了新的文献求助10
5秒前
犹豫的归尘完成签到,获得积分10
6秒前
6秒前
6秒前
Bond完成签到 ,获得积分10
7秒前
8秒前
Michael-布莱恩特完成签到,获得积分10
9秒前
dnnnsns发布了新的文献求助50
10秒前
彩色碧菡完成签到,获得积分10
10秒前
术士1000发布了新的文献求助10
11秒前
Fairy完成签到,获得积分10
11秒前
西瓜xg发布了新的文献求助10
12秒前
杨冰发布了新的文献求助10
13秒前
清脆大树发布了新的文献求助30
13秒前
星辰大海应助hahaha采纳,获得10
13秒前
liuxinxin完成签到,获得积分20
16秒前
可爱的函函应助gh采纳,获得20
16秒前
乔鲁诺·乔巴拿完成签到 ,获得积分10
16秒前
科研包完成签到,获得积分10
17秒前
华仔应助忧虑的无血采纳,获得10
17秒前
18秒前
快乐的柚子完成签到,获得积分10
19秒前
英姑应助liuxinxin采纳,获得10
20秒前
22秒前
yydragen应助科研通管家采纳,获得10
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
64658应助科研通管家采纳,获得10
23秒前
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
田様应助科研通管家采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967219
求助须知:如何正确求助?哪些是违规求助? 3512559
关于积分的说明 11164121
捐赠科研通 3247452
什么是DOI,文献DOI怎么找? 1793849
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804494