PDAtt-Unet: Pyramid Dual-Decoder Attention Unet for Covid-19 infection segmentation from CT-scans

分割 计算机科学 棱锥(几何) 2019年冠状病毒病(COVID-19) 编码器 人工智能 模式识别(心理学) 计算机视觉 医学 疾病 数学 病理 几何学 操作系统 传染病(医学专业)
作者
Fares Bougourzi,Cosimo Distante,Fadi Dornaika,Abdelmalik Taleb-Ahmed
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:86: 102797-102797 被引量:34
标识
DOI:10.1016/j.media.2023.102797
摘要

Since the emergence of the Covid-19 pandemic in late 2019, medical imaging has been widely used to analyze this disease. Indeed, CT-scans of the lungs can help diagnose, detect, and quantify Covid-19 infection. In this paper, we address the segmentation of Covid-19 infection from CT-scans. To improve the performance of the Att-Unet architecture and maximize the use of the Attention Gate, we propose the PAtt-Unet and DAtt-Unet architectures. PAtt-Unet aims to exploit the input pyramids to preserve the spatial awareness in all of the encoder layers. On the other hand, DAtt-Unet is designed to guide the segmentation of Covid-19 infection inside the lung lobes. We also propose to combine these two architectures into a single one, which we refer to as PDAtt-Unet. To overcome the blurry boundary pixels segmentation of Covid-19 infection, we propose a hybrid loss function. The proposed architectures were tested on four datasets with two evaluation scenarios (intra and cross datasets). Experimental results showed that both PAtt-Unet and DAtt-Unet improve the performance of Att-Unet in segmenting Covid-19 infections. Moreover, the combination architecture PDAtt-Unet led to further improvement. To Compare with other methods, three baseline segmentation architectures (Unet, Unet++, and Att-Unet) and three state-of-the-art architectures (InfNet, SCOATNet, and nCoVSegNet) were tested. The comparison showed the superiority of the proposed PDAtt-Unet trained with the proposed hybrid loss (PDEAtt-Unet) over all other methods. Moreover, PDEAtt-Unet is able to overcome various challenges in segmenting Covid-19 infections in four datasets and two evaluation scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助21_xxrr采纳,获得10
刚刚
刚刚
Tigher完成签到,获得积分10
2秒前
朵朵完成签到,获得积分10
2秒前
大喜子发布了新的文献求助10
4秒前
顾矜应助世界第一大庸医采纳,获得10
4秒前
科研通AI6应助当晚星散落采纳,获得10
4秒前
ttang11发布了新的文献求助10
5秒前
Jonathan完成签到,获得积分10
7秒前
7秒前
10秒前
东风夜放花千树完成签到 ,获得积分10
10秒前
zhaoht关注了科研通微信公众号
11秒前
吕大本事完成签到,获得积分10
12秒前
奔波儿灞发布了新的文献求助10
12秒前
12秒前
专一的石头完成签到,获得积分10
13秒前
14秒前
14秒前
浮游应助黄景瑜采纳,获得10
14秒前
Ming应助外向超短裙采纳,获得10
14秒前
浮游应助石榴糖浆红采纳,获得30
15秒前
852应助冷艳的火龙果采纳,获得10
15秒前
Dabai完成签到 ,获得积分10
15秒前
wangjincheng发布了新的文献求助10
16秒前
17秒前
仁仁仁发布了新的文献求助10
17秒前
akakns完成签到,获得积分10
18秒前
19秒前
19秒前
阿崔发布了新的文献求助10
19秒前
19秒前
夜安完成签到 ,获得积分10
20秒前
www完成签到,获得积分10
20秒前
星辰大海应助每天采纳,获得10
20秒前
量子星尘发布了新的文献求助30
21秒前
夜子落完成签到,获得积分10
23秒前
oyfff完成签到 ,获得积分10
23秒前
zhaoht发布了新的文献求助10
24秒前
ttang11完成签到,获得积分10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5135846
求助须知:如何正确求助?哪些是违规求助? 4336273
关于积分的说明 13509016
捐赠科研通 4173984
什么是DOI,文献DOI怎么找? 2288659
邀请新用户注册赠送积分活动 1289370
关于科研通互助平台的介绍 1230624