PDAtt-Unet: Pyramid Dual-Decoder Attention Unet for Covid-19 infection segmentation from CT-scans

分割 计算机科学 棱锥(几何) 2019年冠状病毒病(COVID-19) 编码器 人工智能 模式识别(心理学) 计算机视觉 医学 疾病 数学 病理 几何学 操作系统 传染病(医学专业)
作者
Fares Bougourzi,Cosimo Distante,Fadi Dornaika,Abdelmalik Taleb‐Ahmed
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:86: 102797-102797 被引量:110
标识
DOI:10.1016/j.media.2023.102797
摘要

Since the emergence of the Covid-19 pandemic in late 2019, medical imaging has been widely used to analyze this disease. Indeed, CT-scans of the lungs can help diagnose, detect, and quantify Covid-19 infection. In this paper, we address the segmentation of Covid-19 infection from CT-scans. To improve the performance of the Att-Unet architecture and maximize the use of the Attention Gate, we propose the PAtt-Unet and DAtt-Unet architectures. PAtt-Unet aims to exploit the input pyramids to preserve the spatial awareness in all of the encoder layers. On the other hand, DAtt-Unet is designed to guide the segmentation of Covid-19 infection inside the lung lobes. We also propose to combine these two architectures into a single one, which we refer to as PDAtt-Unet. To overcome the blurry boundary pixels segmentation of Covid-19 infection, we propose a hybrid loss function. The proposed architectures were tested on four datasets with two evaluation scenarios (intra and cross datasets). Experimental results showed that both PAtt-Unet and DAtt-Unet improve the performance of Att-Unet in segmenting Covid-19 infections. Moreover, the combination architecture PDAtt-Unet led to further improvement. To Compare with other methods, three baseline segmentation architectures (Unet, Unet++, and Att-Unet) and three state-of-the-art architectures (InfNet, SCOATNet, and nCoVSegNet) were tested. The comparison showed the superiority of the proposed PDAtt-Unet trained with the proposed hybrid loss (PDEAtt-Unet) over all other methods. Moreover, PDEAtt-Unet is able to overcome various challenges in segmenting Covid-19 infections in four datasets and two evaluation scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
小二郎应助michen采纳,获得10
3秒前
4秒前
4秒前
雾里看花水中望月完成签到,获得积分20
4秒前
4秒前
wzy发布了新的文献求助10
4秒前
yjf,123发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
执着幻桃完成签到,获得积分10
6秒前
阆州发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
重要寄松发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
深情安青应助顺利寻真采纳,获得20
8秒前
8秒前
共享精神应助mm采纳,获得10
8秒前
阡陌完成签到,获得积分10
8秒前
Hhh发布了新的文献求助10
9秒前
小苏同学完成签到,获得积分10
10秒前
lawang发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031