PDAtt-Unet: Pyramid Dual-Decoder Attention Unet for Covid-19 infection segmentation from CT-scans

分割 计算机科学 棱锥(几何) 2019年冠状病毒病(COVID-19) 编码器 人工智能 模式识别(心理学) 计算机视觉 医学 疾病 数学 病理 几何学 传染病(医学专业) 操作系统
作者
Fares Bougourzi,Cosimo Distante,Fadi Dornaika,Abdelmalik Taleb-Ahmed
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:86: 102797-102797 被引量:34
标识
DOI:10.1016/j.media.2023.102797
摘要

Since the emergence of the Covid-19 pandemic in late 2019, medical imaging has been widely used to analyze this disease. Indeed, CT-scans of the lungs can help diagnose, detect, and quantify Covid-19 infection. In this paper, we address the segmentation of Covid-19 infection from CT-scans. To improve the performance of the Att-Unet architecture and maximize the use of the Attention Gate, we propose the PAtt-Unet and DAtt-Unet architectures. PAtt-Unet aims to exploit the input pyramids to preserve the spatial awareness in all of the encoder layers. On the other hand, DAtt-Unet is designed to guide the segmentation of Covid-19 infection inside the lung lobes. We also propose to combine these two architectures into a single one, which we refer to as PDAtt-Unet. To overcome the blurry boundary pixels segmentation of Covid-19 infection, we propose a hybrid loss function. The proposed architectures were tested on four datasets with two evaluation scenarios (intra and cross datasets). Experimental results showed that both PAtt-Unet and DAtt-Unet improve the performance of Att-Unet in segmenting Covid-19 infections. Moreover, the combination architecture PDAtt-Unet led to further improvement. To Compare with other methods, three baseline segmentation architectures (Unet, Unet++, and Att-Unet) and three state-of-the-art architectures (InfNet, SCOATNet, and nCoVSegNet) were tested. The comparison showed the superiority of the proposed PDAtt-Unet trained with the proposed hybrid loss (PDEAtt-Unet) over all other methods. Moreover, PDEAtt-Unet is able to overcome various challenges in segmenting Covid-19 infections in four datasets and two evaluation scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官蔚蓝完成签到 ,获得积分10
1秒前
3秒前
法外狂徒应助视野胤采纳,获得10
3秒前
迅速的曼卉完成签到 ,获得积分10
4秒前
4秒前
杨浩然发布了新的文献求助10
9秒前
甜甜玫瑰应助天之骄子采纳,获得10
10秒前
慕青应助研友_8yN60L采纳,获得10
12秒前
14秒前
杨浩然完成签到,获得积分20
14秒前
15秒前
动听的一一完成签到 ,获得积分10
17秒前
123发布了新的文献求助10
18秒前
18秒前
19秒前
Owen应助ardejiang采纳,获得10
19秒前
结实的啤酒完成签到 ,获得积分10
19秒前
豆豆发布了新的文献求助10
20秒前
辽东浅墨应助科研通管家采纳,获得30
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
坦率耳机应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
乐乐应助科研通管家采纳,获得30
20秒前
汉堡包应助科研通管家采纳,获得10
21秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助无异常采纳,获得10
22秒前
okl发布了新的文献求助10
22秒前
桐桐应助杨浩然采纳,获得10
22秒前
研友_8yN60L发布了新的文献求助10
22秒前
chenhaha完成签到 ,获得积分10
25秒前
Jamie完成签到,获得积分10
25秒前
yellow123完成签到 ,获得积分20
26秒前
26秒前
orixero应助123采纳,获得10
26秒前
FashionBoy应助okl采纳,获得10
28秒前
Scar_SJ完成签到,获得积分10
28秒前
29秒前
NZH发布了新的文献求助10
30秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233052
求助须知:如何正确求助?哪些是违规求助? 2879715
关于积分的说明 8212369
捐赠科研通 2547202
什么是DOI,文献DOI怎么找? 1376619
科研通“疑难数据库(出版商)”最低求助积分说明 647677
邀请新用户注册赠送积分活动 623067