Power and freshwater prediction against seasonal variation in OC-OTEC plant at Lakshadweep using DNN

海面温度 海洋热能转换 环境科学 人工神经网络 可再生能源 地表水 气候学 海洋学 气象学 海水 计算机科学 人工智能 地理 地质学 工程类 环境工程 电气工程
作者
Biren Pattanaik,S. Sutha,B Thirumurugan,Plaban Datta,Sharda Sundaram Sanjay,Sumukh Surya,Prasanna V Vishnu,Purnima Jalihal
标识
DOI:10.1109/iprecon55716.2022.10059529
摘要

Ocean Thermal Energy Conversion(OTEC) is one of the most important renewable energy resources for islanders to meet the power and freshwater demand. It uses the temperature gradient between warm surface sea water and cold deep sea water. Challenges associated with the OC-OTEC are efficiency and economy. The efficiency of OTEC is mainly influenced by Sea Surface Temperature(SST) variations. The prediction of sea surface temperature is also a challenging task in a region with high SST variability. Hence an accurate SST prediction plays a major role in estimating the power and freshwater generation. Nowadays, Deep Neural Network(DNN) based prediction models are used for accurate SST prediction In this study, energy and freshwater production of the Open Cycle (OC) - OTEC plant at Lakshadweep is assessed based on the predicted SST variations of Lakshadweep and experimental data collected from the OTEC plant at NIOT, Chennai. First, the SST variation of Lakshadweep is predicted by developing prediction models using Recurrent Neural Network (RNN) based Long Short-Term Memory (LSTM) Deep Neural networks (DNN) using ten-year ECMWF satellite image monthly data. These predictive models are used to forecast OTEC power and freshwater. Finally, the net power and freshwater generations over a complete year have been evaluated for monthly as well as seasonal variations. The proposed methodology can be extensively used to optimize the usage of other renewable resources to satisfy the power and freshwater demand of islanders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sqqq完成签到 ,获得积分10
刚刚
2953685951完成签到,获得积分10
1秒前
会飞的猪完成签到,获得积分10
2秒前
讨厌鬼完成签到,获得积分10
5秒前
夏未央完成签到,获得积分10
5秒前
小言完成签到,获得积分20
8秒前
MetaMysteria完成签到,获得积分10
10秒前
test_20251231发布了新的文献求助50
12秒前
科研通AI2S应助123456采纳,获得10
12秒前
12秒前
胡蝶完成签到 ,获得积分10
14秒前
无情的井完成签到,获得积分10
14秒前
故事细腻完成签到 ,获得积分10
15秒前
tangz发布了新的文献求助10
15秒前
张姚发布了新的文献求助10
15秒前
完美世界应助XIEQ采纳,获得10
16秒前
whoKnows应助Tom采纳,获得20
18秒前
cc发布了新的文献求助10
19秒前
bkagyin应助科研通管家采纳,获得10
21秒前
1101592875应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
思源应助科研通管家采纳,获得30
21秒前
大龙哥886应助科研通管家采纳,获得10
21秒前
香蕉觅云应助科研通管家采纳,获得30
21秒前
宅多点应助科研通管家采纳,获得10
21秒前
1101592875应助科研通管家采纳,获得10
21秒前
21秒前
shhoing应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
orixero应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
雨姐科研应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
Z1987完成签到,获得积分10
22秒前
宅多点应助科研通管家采纳,获得10
22秒前
雨姐科研应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560110
求助须知:如何正确求助?哪些是违规求助? 4645276
关于积分的说明 14674677
捐赠科研通 4586381
什么是DOI,文献DOI怎么找? 2516410
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460866