scMCs: a framework for single-cell multi-omics data integration and multiple clusterings

聚类分析 计算机科学 数据挖掘 数据集成 双聚类 冗余(工程) 计算生物学 机器学习 模糊聚类 生物 CURE数据聚类算法 操作系统
作者
Liang-Rui Ren,Jun Wang,Zhao Li,Qingzhong Li,Guoxian Yu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (4) 被引量:10
标识
DOI:10.1093/bioinformatics/btad133
摘要

Abstract Motivation The integration of single-cell multi-omics data can uncover the underlying regulatory basis of diverse cell types and states. However, contemporary methods disregard the omics individuality, and the high noise, sparsity, and heterogeneity of single-cell data also impact the fusion effect. Furthermore, available single-cell clustering methods only focus on the cell type clustering, which cannot mine the alternative clustering to comprehensively analyze cells. Results We propose a single-cell data fusion based multiple clustering (scMCs) approach that can jointly model single-cell transcriptomics and epigenetic data, and explore multiple different clusterings. scMCs first mines the omics-specific and cross-omics consistent representations, then fuses them into a co-embedding representation, which can dissect cellular heterogeneity and impute data. To discover the potential alternative clustering embedded in multi-omics, scMCs projects the co-embedding representation into different salient subspaces. Meanwhile, it reduces the redundancy between subspaces to enhance the diversity of alternative clusterings and optimizes the cluster centers in each subspace to boost the quality of corresponding clustering. Unlike single clustering, these alternative clusterings provide additional perspectives for understanding complex genetic information, such as cell types and states. Experimental results show that scMCs can effectively identify subcellular types, impute dropout events, and uncover diverse cell characteristics by giving different but meaningful clusterings. Availability and implementation The code is available at www.sdu-idea.cn/codes.php?name=scMCs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助佳佳爱学习采纳,获得10
刚刚
胡辣椒麻鸡完成签到,获得积分10
刚刚
刚刚
李爱国应助高调的摆酒人采纳,获得10
1秒前
1秒前
可口可乐完成签到,获得积分10
1秒前
Zzzz完成签到,获得积分10
1秒前
shenya0810应助livra1058采纳,获得10
1秒前
粉嘟嘟loved完成签到,获得积分10
1秒前
杨杨完成签到,获得积分10
2秒前
无敌OUT曼完成签到,获得积分10
2秒前
奶瓶守护者完成签到 ,获得积分10
2秒前
jade257完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
我爱学习发布了新的文献求助10
4秒前
kukuluo完成签到,获得积分10
4秒前
啦啦啦啦完成签到 ,获得积分10
4秒前
jc2001完成签到,获得积分10
5秒前
5秒前
鹤轸完成签到,获得积分10
5秒前
理想沦陷发布了新的文献求助10
7秒前
YB完成签到,获得积分10
7秒前
温柔一枪王小双完成签到,获得积分10
7秒前
朱朱朱完成签到,获得积分10
8秒前
8秒前
WSGQT完成签到,获得积分10
8秒前
9秒前
zzl完成签到,获得积分10
9秒前
WeiBao发布了新的文献求助10
9秒前
Russell发布了新的文献求助10
9秒前
10秒前
小松松完成签到,获得积分10
10秒前
xiaowang完成签到,获得积分10
10秒前
10秒前
小太阳完成签到,获得积分10
10秒前
10秒前
miao发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510498
求助须知:如何正确求助?哪些是违规求助? 4605134
关于积分的说明 14492967
捐赠科研通 4540342
什么是DOI,文献DOI怎么找? 2487940
邀请新用户注册赠送积分活动 1470152
关于科研通互助平台的介绍 1442632