scMCs: a framework for single-cell multi-omics data integration and multiple clusterings

聚类分析 计算机科学 数据挖掘 数据集成 双聚类 冗余(工程) 计算生物学 机器学习 模糊聚类 生物 CURE数据聚类算法 操作系统
作者
Liang-Rui Ren,Jun Wang,Zhao Li,Qingzhong Li,Guoxian Yu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (4) 被引量:10
标识
DOI:10.1093/bioinformatics/btad133
摘要

Abstract Motivation The integration of single-cell multi-omics data can uncover the underlying regulatory basis of diverse cell types and states. However, contemporary methods disregard the omics individuality, and the high noise, sparsity, and heterogeneity of single-cell data also impact the fusion effect. Furthermore, available single-cell clustering methods only focus on the cell type clustering, which cannot mine the alternative clustering to comprehensively analyze cells. Results We propose a single-cell data fusion based multiple clustering (scMCs) approach that can jointly model single-cell transcriptomics and epigenetic data, and explore multiple different clusterings. scMCs first mines the omics-specific and cross-omics consistent representations, then fuses them into a co-embedding representation, which can dissect cellular heterogeneity and impute data. To discover the potential alternative clustering embedded in multi-omics, scMCs projects the co-embedding representation into different salient subspaces. Meanwhile, it reduces the redundancy between subspaces to enhance the diversity of alternative clusterings and optimizes the cluster centers in each subspace to boost the quality of corresponding clustering. Unlike single clustering, these alternative clusterings provide additional perspectives for understanding complex genetic information, such as cell types and states. Experimental results show that scMCs can effectively identify subcellular types, impute dropout events, and uncover diverse cell characteristics by giving different but meaningful clusterings. Availability and implementation The code is available at www.sdu-idea.cn/codes.php?name=scMCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
55555555发布了新的文献求助10
刚刚
3秒前
5秒前
基金中中中完成签到,获得积分10
5秒前
5秒前
7秒前
华仔应助55555555采纳,获得10
7秒前
9秒前
10秒前
玖Nine发布了新的文献求助10
11秒前
酷波er应助guguoxian采纳,获得10
11秒前
WHaha发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
55555555完成签到,获得积分10
14秒前
Jasper应助晴小阳采纳,获得10
15秒前
jingsihan完成签到,获得积分10
15秒前
会撒娇的羿完成签到,获得积分10
15秒前
lilililith应助土又鸟采纳,获得10
16秒前
17秒前
18秒前
v小飞侠101发布了新的文献求助10
19秒前
游戏人间完成签到 ,获得积分10
20秒前
21秒前
25秒前
小李找文献完成签到,获得积分10
26秒前
26秒前
27秒前
minever白完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
29秒前
波比冰苏打完成签到,获得积分10
30秒前
31秒前
华仔应助玖Nine采纳,获得10
33秒前
上官若男应助玖Nine采纳,获得10
33秒前
Good_小鬼发布了新的文献求助10
34秒前
慕青应助v小飞侠101采纳,获得10
37秒前
晴小阳完成签到,获得积分10
37秒前
沙拉完成签到,获得积分10
39秒前
40秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167