scMCs: a framework for single-cell multi-omics data integration and multiple clusterings

聚类分析 计算机科学 数据挖掘 数据集成 双聚类 冗余(工程) 计算生物学 机器学习 模糊聚类 生物 CURE数据聚类算法 操作系统
作者
Liang-Rui Ren,Jun Wang,Zhao Li,Qingzhong Li,Guoxian Yu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (4) 被引量:10
标识
DOI:10.1093/bioinformatics/btad133
摘要

Abstract Motivation The integration of single-cell multi-omics data can uncover the underlying regulatory basis of diverse cell types and states. However, contemporary methods disregard the omics individuality, and the high noise, sparsity, and heterogeneity of single-cell data also impact the fusion effect. Furthermore, available single-cell clustering methods only focus on the cell type clustering, which cannot mine the alternative clustering to comprehensively analyze cells. Results We propose a single-cell data fusion based multiple clustering (scMCs) approach that can jointly model single-cell transcriptomics and epigenetic data, and explore multiple different clusterings. scMCs first mines the omics-specific and cross-omics consistent representations, then fuses them into a co-embedding representation, which can dissect cellular heterogeneity and impute data. To discover the potential alternative clustering embedded in multi-omics, scMCs projects the co-embedding representation into different salient subspaces. Meanwhile, it reduces the redundancy between subspaces to enhance the diversity of alternative clusterings and optimizes the cluster centers in each subspace to boost the quality of corresponding clustering. Unlike single clustering, these alternative clusterings provide additional perspectives for understanding complex genetic information, such as cell types and states. Experimental results show that scMCs can effectively identify subcellular types, impute dropout events, and uncover diverse cell characteristics by giving different but meaningful clusterings. Availability and implementation The code is available at www.sdu-idea.cn/codes.php?name=scMCs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
留胡子的迎梦完成签到 ,获得积分10
1秒前
Xltox发布了新的文献求助10
1秒前
ZYH发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
彭于晏应助袁小七采纳,获得10
2秒前
列子完成签到,获得积分10
2秒前
QAQ发布了新的文献求助10
3秒前
3秒前
3秒前
rain发布了新的文献求助10
6秒前
6秒前
红孩儿完成签到,获得积分20
6秒前
刘甲凯完成签到,获得积分10
6秒前
长命百岁完成签到 ,获得积分10
6秒前
木头人呐完成签到 ,获得积分10
7秒前
7秒前
taeyeon完成签到,获得积分10
7秒前
落后念柏完成签到,获得积分10
8秒前
小二郎应助aniannn采纳,获得10
8秒前
QAQ完成签到,获得积分10
8秒前
CodeCraft应助有魅力的彩虹采纳,获得10
9秒前
9秒前
尽快毕业完成签到 ,获得积分10
9秒前
WHaha发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
nessa发布了新的文献求助10
10秒前
10秒前
小二郎应助红孩儿采纳,获得10
11秒前
Jeffrey发布了新的文献求助30
11秒前
墨子白完成签到,获得积分10
12秒前
12秒前
Owen应助顺利秋灵采纳,获得10
12秒前
伏黑发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
苏ss发布了新的文献求助10
15秒前
15秒前
15秒前
weiwei发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730487
求助须知:如何正确求助?哪些是违规求助? 5323552
关于积分的说明 15318985
捐赠科研通 4876967
什么是DOI,文献DOI怎么找? 2619847
邀请新用户注册赠送积分活动 1569165
关于科研通互助平台的介绍 1525773