亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

scMCs: a framework for single-cell multi-omics data integration and multiple clusterings

聚类分析 计算机科学 数据挖掘 数据集成 双聚类 冗余(工程) 计算生物学 机器学习 模糊聚类 生物 CURE数据聚类算法 操作系统
作者
Liang-Rui Ren,Jun Wang,Zhao Li,Qingzhong Li,Guoxian Yu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (4) 被引量:10
标识
DOI:10.1093/bioinformatics/btad133
摘要

Abstract Motivation The integration of single-cell multi-omics data can uncover the underlying regulatory basis of diverse cell types and states. However, contemporary methods disregard the omics individuality, and the high noise, sparsity, and heterogeneity of single-cell data also impact the fusion effect. Furthermore, available single-cell clustering methods only focus on the cell type clustering, which cannot mine the alternative clustering to comprehensively analyze cells. Results We propose a single-cell data fusion based multiple clustering (scMCs) approach that can jointly model single-cell transcriptomics and epigenetic data, and explore multiple different clusterings. scMCs first mines the omics-specific and cross-omics consistent representations, then fuses them into a co-embedding representation, which can dissect cellular heterogeneity and impute data. To discover the potential alternative clustering embedded in multi-omics, scMCs projects the co-embedding representation into different salient subspaces. Meanwhile, it reduces the redundancy between subspaces to enhance the diversity of alternative clusterings and optimizes the cluster centers in each subspace to boost the quality of corresponding clustering. Unlike single clustering, these alternative clusterings provide additional perspectives for understanding complex genetic information, such as cell types and states. Experimental results show that scMCs can effectively identify subcellular types, impute dropout events, and uncover diverse cell characteristics by giving different but meaningful clusterings. Availability and implementation The code is available at www.sdu-idea.cn/codes.php?name=scMCs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JoeyJin完成签到,获得积分10
3秒前
我是老大应助科研王者采纳,获得10
3秒前
49秒前
yeeeee发布了新的文献求助10
55秒前
ttkx发布了新的文献求助10
1分钟前
CipherSage应助yeeeee采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
artos发布了新的文献求助30
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
科研通AI6应助artos采纳,获得10
2分钟前
华仔应助CC采纳,获得30
3分钟前
3分钟前
CC发布了新的文献求助30
3分钟前
执着梦柏完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
4分钟前
清晨仪仪发布了新的文献求助30
4分钟前
5分钟前
步念发布了新的文献求助30
5分钟前
科研通AI6应助步念采纳,获得30
5分钟前
Ava应助查莉采纳,获得10
5分钟前
清晨仪仪发布了新的文献求助10
5分钟前
麻辣香锅发布了新的文献求助10
6分钟前
科研通AI6应助CC采纳,获得10
6分钟前
李李爱种花完成签到 ,获得积分10
6分钟前
6分钟前
查莉发布了新的文献求助10
6分钟前
6分钟前
科研通AI6应助麻辣香锅采纳,获得10
6分钟前
6分钟前
7分钟前
小萌兽完成签到 ,获得积分10
7分钟前
ysy完成签到,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622241
求助须知:如何正确求助?哪些是违规求助? 4707275
关于积分的说明 14938986
捐赠科研通 4769648
什么是DOI,文献DOI怎么找? 2552255
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475053