Accurate Detection and Precision Spraying of Corn and Weeds Using the Improved YOLOv5 Model

瓶颈 计算机科学 特征(语言学) 特征提取 人工智能 机器人 模式识别(心理学) 噪音(视频) 计算机视觉 图像(数学) 哲学 语言学 嵌入式系统
作者
Baoju Wang,Yu Yan,Yubin Lan,Meng Wang,Zhihao Bian
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 29868-29882 被引量:16
标识
DOI:10.1109/access.2023.3258439
摘要

The precise identification of corn and weeds plays an important role in precise spraying. This paper proposed a lightweight model based on the improved yolov5s and built a precision spraying robot. Firstly, we used a data augmentation method based on category balance and agronomic characteristics to solve the data imbalance problem. Then, compared with yolov5s, yolov5l, yolov5m, and yolov5x, we found that yolov5s has both real-time and accuracy and is easier to deploy the model on edge devices. Through the feature map visualization experiment, we found that the feature extraction network can’t pay close attention to the important feature of the target and suppress the feature of the noise. Therefore, we added the attention mechanism. In order to improve the real-time performance of the model, we designed the C3-Ghost-bottleneck module. Finally, we built a precision spraying robot. Compared with the original model, the value of map@0.5 is increased by 3.2%, the model file is reduced by 3.6 MB, the AP value for corn is increased from 93.2% to 96.3%, and the AP value for weeds is increased from 85.6% to 88.9%. Finally, the precision spraying experiment of weeds was carried out. The recognition accuracy of weeds is 83%, the probability of the spraying robot correctly identifying weeds and accurately spraying is 81%, and the detection speed is 30ms/f. The experimental results verify the feasibility of precision spraying weeding and the effectiveness of the improved model, which can provide a reference for the engineering application of precision weeding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
认真的裙子完成签到,获得积分10
2秒前
寄托完成签到 ,获得积分10
2秒前
猪猪小弟完成签到,获得积分10
3秒前
3秒前
awu完成签到,获得积分10
4秒前
爱吃修勾右完成签到 ,获得积分10
5秒前
淡定鸿涛发布了新的文献求助10
5秒前
lkk完成签到,获得积分10
6秒前
努力向前看完成签到,获得积分10
6秒前
6秒前
7秒前
LZY发布了新的文献求助10
7秒前
李健应助小何采纳,获得10
8秒前
8秒前
XYxiangqian完成签到,获得积分10
9秒前
领导范儿应助ferry123采纳,获得10
9秒前
上官若男应助无限毛豆采纳,获得10
11秒前
Zhy完成签到,获得积分10
11秒前
awu发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
13秒前
Sunny发布了新的文献求助10
14秒前
佛系发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
森林木完成签到,获得积分10
15秒前
tjnusq发布了新的文献求助10
15秒前
123456发布了新的文献求助10
16秒前
郑成发布了新的文献求助10
16秒前
diorzhang发布了新的文献求助10
17秒前
快乐的晟睿完成签到,获得积分10
18秒前
18秒前
18秒前
充电宝应助不可思宇采纳,获得10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148271
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7834708
捐赠科研通 2456632
什么是DOI,文献DOI怎么找? 1307357
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655