The Potential for Speech Intelligibility Improvement Using the Ideal Binary Mask and the Ideal Wiener Filter in Single Channel Noise Reduction Systems: Application to Auditory Prostheses

可理解性(哲学) 计算机科学 二进制数 降噪 语音识别 听觉场景分析 数学 人工智能 算术 哲学 认识论
作者
Nilesh Madhu,Ann Spriet,Sofie Jansen,Raphael Koning,Jan Wouters
出处
期刊:IEEE Transactions on Audio, Speech, and Language Processing [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 63-72 被引量:54
标识
DOI:10.1109/tasl.2012.2213248
摘要

Whereas state-of-the-art single-channel noise reduction algorithms for auditory prostheses demonstrate an appreciable suppression of the noise and improved speech quality, they are unable, thus far, to improve the intelligibility of noise-degraded speech signals. Alternative approaches to speech enhancement using a binary time-frequency mask have demonstrated substantial intelligibility improvements in low signal-to-noise-ratio (SNR) conditions under ideal settings, making this a promising research direction for auditory prostheses. These approaches exploit the sparsity and disjoint-ness of speech spectra in their short-time-frequency representation to preserve only the target-dominant time-frequency regions in the processed output. State-of-the-art noise reduction algorithms in contrast are soft-decision approaches which weight each time-frequency region in proportion to the prevailing SNR. However, the potential for intelligibility improvement using these approaches has not been examined systematically vis-à-vis the binary mask alternative. This contribution compares the performance of an ideal soft-decision system, exemplified by the ideal Wiener filter (IWF), and the ideal binary mask (IBM) for single-channel speech enhancement for auditory prostheses. To obtain results relevant to this application area, a (relatively) low spectral resolution, modelled using the Bark-spectrum scale, is used for both the IWF and the IBM. This spectral resolution is comparable to that being used in commercial hearing instruments. The comparison is in terms of potential for intelligibility improvement and resulting signal quality. Intelligibility tests carried out under various noise conditions and SNRs show that the IWF leads to higher intelligibility scores than the IBM in low SNR conditions. Under non-ideal parameter estimates, it is demonstrated that the IWF approach is also much less sensitive to estimation errors. Quality-wise, a preference for the IWF exists. This was evaluated using a two-stage, pair-wise preference-rating test.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助曾经大地采纳,获得10
刚刚
醍醐不醒完成签到 ,获得积分10
刚刚
2秒前
4秒前
4秒前
科研通AI6应助panyubo采纳,获得10
4秒前
悠悠发布了新的文献求助20
5秒前
6秒前
LOTUS发布了新的文献求助10
8秒前
扎根完成签到,获得积分10
8秒前
柏不斜发布了新的文献求助10
9秒前
coollz完成签到,获得积分20
9秒前
9秒前
10秒前
10秒前
扎根发布了新的文献求助150
11秒前
乐in林发布了新的文献求助10
11秒前
玩命的小虾米完成签到,获得积分10
12秒前
junlin完成签到,获得积分10
13秒前
所所应助surain采纳,获得10
14秒前
AMM发布了新的文献求助10
14秒前
Tian发布了新的文献求助100
16秒前
16秒前
FashionBoy应助聪明海云采纳,获得10
18秒前
666发布了新的文献求助10
21秒前
TCMning发布了新的文献求助10
22秒前
22秒前
四玖玖完成签到,获得积分10
24秒前
酷波er应助xx采纳,获得10
26秒前
海斯泰因发布了新的文献求助10
27秒前
Daisy发布了新的文献求助10
27秒前
害怕的水之完成签到,获得积分10
28秒前
一生低首向东坡完成签到,获得积分20
28秒前
风吹麦田应助ljn采纳,获得50
28秒前
28秒前
深情的鞯发布了新的文献求助10
29秒前
heaven发布了新的文献求助10
29秒前
雨中小王应助懵懂的寻冬采纳,获得10
29秒前
surain完成签到,获得积分10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588751
求助须知:如何正确求助?哪些是违规求助? 4671674
关于积分的说明 14788516
捐赠科研通 4626078
什么是DOI,文献DOI怎么找? 2531920
邀请新用户注册赠送积分活动 1500505
关于科研通互助平台的介绍 1468329