Coronary Plaque Classification With Intravascular Ultrasound Radiofrequency Data Analysis

心脏病学 超声波 急性冠脉综合征 冠状动脉疾病 内科学 易损斑块 管腔(解剖学) 纤维帽 光学相干层析成像
作者
Anuja Nair,Barry D. Kuban,E. Murat Tuzcu,Paul Schoenhagen,Steven E. Nissen,D. Geoffrey Vince
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:106 (17): 2200-2206 被引量:1061
标识
DOI:10.1161/01.cir.0000035654.18341.5e
摘要

Atherosclerotic plaque stability is related to histological composition. However, current diagnostic tools do not allow adequate in vivo identification and characterization of plaques. Spectral analysis of backscattered intravascular ultrasound (IVUS) data has potential for real-time in vivo plaque classification.Eighty-eight plaques from 51 left anterior descending coronary arteries were imaged ex vivo at physiological pressure with the use of 30-MHz IVUS transducers. After IVUS imaging, the arteries were pressure-fixed and corresponding histology was collected in matched images. Regions of interest, selected from histology, were 101 fibrous, 56 fibrolipidic, 50 calcified, and 70 calcified-necrotic regions. Classification schemes for model building were computed for autoregressive and classic Fourier spectra by using 75% of the data. The remaining data were used for validation. Autoregressive classification schemes performed better than those from classic Fourier spectra with accuracies of 90.4% for fibrous, 92.8% for fibrolipidic, 90.9% for calcified, and 89.5% for calcified-necrotic regions in the training data set and 79.7%, 81.2%, 92.8%, and 85.5% in the test data, respectively. Tissue maps were reconstructed with the use of accurate predictions of plaque composition from the autoregressive classification scheme.Coronary plaque composition can be predicted through the use of IVUS radiofrequency data analysis. Autoregressive classification schemes performed better than classic Fourier methods. These techniques allow real-time analysis of IVUS data, enabling in vivo plaque characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助greentea采纳,获得10
刚刚
1秒前
Hollen发布了新的文献求助50
1秒前
英俊的铭应助903869831@qq.com采纳,获得10
1秒前
一一完成签到 ,获得积分10
2秒前
yuying完成签到,获得积分10
3秒前
充电宝应助super chan采纳,获得10
3秒前
4秒前
4秒前
马倩茹发布了新的文献求助10
5秒前
秤子发布了新的文献求助10
7秒前
科研通AI5应助早上好采纳,获得10
8秒前
randi发布了新的文献求助10
8秒前
9秒前
咯噔发布了新的文献求助10
10秒前
Whim应助笨狗读书采纳,获得30
11秒前
小二郎应助小余采纳,获得10
12秒前
滴答滴答完成签到,获得积分10
12秒前
LuoZuoZhi完成签到,获得积分10
13秒前
wdlc发布了新的文献求助100
13秒前
科研通AI5应助xwz626采纳,获得30
13秒前
14秒前
15秒前
田様应助chrysan采纳,获得10
15秒前
科研通AI5应助罗拉采纳,获得10
15秒前
super chan发布了新的文献求助10
17秒前
谦让的抽屉完成签到,获得积分20
18秒前
滴答滴答发布了新的文献求助10
19秒前
早上好发布了新的文献求助10
20秒前
Ava应助张育程采纳,获得10
20秒前
小马甲应助秤子采纳,获得10
21秒前
xqy完成签到 ,获得积分10
21秒前
连烙完成签到,获得积分20
22秒前
24秒前
25秒前
夏末关注了科研通微信公众号
25秒前
123发布了新的文献求助10
27秒前
连烙发布了新的文献求助10
28秒前
烤鸭完成签到 ,获得积分10
28秒前
荒糖发布了新的文献求助10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427