粘附
攀登
树蛙
剪切力
胶粘剂
剪切(地质)
机制(生物学)
材料科学
接头(建筑物)
解剖
机械
地质学
复合材料
物理
结构工程
生物
工程类
图层(电子)
量子力学
古生物学
作者
Gavin Hanna,W. Jon. P. Barnes
标识
DOI:10.1242/jeb.155.1.103
摘要
ABSTRACT The mechanisms by which the toe pads of tree frogs adhere to and detach from surfaces during climbing have been studied in Osteopilus septentrionalis and other tree frogs using a variety of techniques. The experiments on attachment lend general support to the theory that toe pads stick by wet adhesion. First, the presence of a meniscus surrounding the area of contact shows that pad and surface are connected by a fluid-filled joint. Second, experiments on single toe pads of anaesthetised frogs demonstrate that the pads exhibit the velocity-dependent resistance to shear forces expected of any system employing a fluid as an adhesive mechanism. Third, the largest adhesive forces that toe pads can generate (approx. 1.2mNmm−2, calculated from data on sticking ability) are within the range that can be produced by wet adhesion. Simple measurements of the forces needed to separate a pair of metal discs joined by mucus demonstrate that both viscous forces (Stefan adhesion) and surface tension (the two components of wet adhesion) are likely to play significant roles in the tree frog’s adhesive mechanism. The experiments on detachment demonstrate that toe pads are detached from surfaces by peeling, the pads being removed from the rear forwards during forward locomotion up a vertical surface. When the frogs were induced to walk backwards down this vertical slope, peeling occurred from the front of the pad rearwards. Use of a force platform to measure directly the forces exerted by the feet during climbing shows that, during forward locomotion up a vertical slope, this peeling is not accompanied by any detectable detachment forces. Such forces of detachment are seen, however, during backward walking down the slope and when belly skin comes into contact with the platform. That peeling occurs automatically during forward locomotion is supported both by observations of peeling in single toe pads of anaesthetised frogs and by the inability of frogs to adhere to vertical surfaces in a head-down orientation. Indeed, frogs on a rotating vertical surface were observed to adjust their orientations back towards the vertical whenever their deviation from the vertical reached 85.1 ±21.5°. During forward locomotion peeling seems to occur as a natural consequence of the way in which the toes are lifted off surfaces from the rear forwards, while during backward locomotion it is an active process involving the distal tendons of the toes.
科研通智能强力驱动
Strongly Powered by AbleSci AI