Trehalose metabolism in plants

海藻糖 蔗糖 生物 光合作用 新陈代谢 淀粉 生物化学 突变体 果糖 植物 基因
作者
John E. Lunn,Ines Delorge,Carlos M. Figueroa,Patrick Van Dijck,Mark Stitt
出处
期刊:Plant Journal [Wiley]
卷期号:79 (4): 544-567 被引量:530
标识
DOI:10.1111/tpj.12509
摘要

Trehalose is a quantitatively important compatible solute and stress protectant in many organisms, including green algae and primitive plants. These functions have largely been replaced by sucrose in vascular plants, and trehalose metabolism has taken on new roles. Trehalose is a potential signal metabolite in plant interactions with pathogenic or symbiotic micro-organisms and herbivorous insects. It is also implicated in responses to cold and salinity, and in regulation of stomatal conductance and water-use efficiency. In plants, as in other eukaryotes and many prokaryotes, trehalose is synthesized via a phosphorylated intermediate, trehalose 6-phosphate (Tre6P). A meta-analysis revealed that the levels of Tre6P change in parallel with sucrose, which is the major product of photosynthesis and the main transport sugar in plants. We propose the existence of a bi-directional network, in which Tre6P is a signal of sucrose availability and acts to maintain sucrose concentrations within an appropriate range. Tre6P influences the relative amounts of sucrose and starch that accumulate in leaves during the day, and regulates the rate of starch degradation at night to match the demand for sucrose. Mutants in Tre6P metabolism have highly pleiotropic phenotypes, showing defects in embryogenesis, leaf growth, flowering, inflorescence branching and seed set. It has been proposed that Tre6P influences plant growth and development via inhibition of the SNF1-related protein kinase (SnRK1). However, current models conflict with some experimental data, and do not completely explain the pleiotropic phenotypes exhibited by mutants in Tre6P metabolism. Additional explanations for the diverse effects of alterations in Tre6P metabolism are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
研友_VZG7GZ应助pufanlg采纳,获得10
刚刚
顾矜应助fufu采纳,获得10
1秒前
1秒前
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
dengsiqian发布了新的文献求助10
5秒前
不安的嘉熙完成签到,获得积分10
5秒前
Kenny发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
李楼村完成签到,获得积分10
6秒前
h丶小虫完成签到,获得积分10
6秒前
腼腆的耷发布了新的文献求助10
7秒前
zhou发布了新的文献求助10
7秒前
亳亳发布了新的文献求助10
7秒前
Genius发布了新的文献求助10
7秒前
李老头发布了新的文献求助10
7秒前
8秒前
情怀应助邻街采纳,获得10
9秒前
9秒前
gl7183完成签到,获得积分10
9秒前
9秒前
10秒前
自由的聋五完成签到,获得积分10
10秒前
jackmilton完成签到,获得积分10
10秒前
深渊与海发布了新的文献求助10
10秒前
xuyw应助岩中花述采纳,获得10
10秒前
11秒前
西瓜发布了新的文献求助10
12秒前
科研通AI6应助风中泰坦采纳,获得10
12秒前
852应助晴朗采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906