已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Plant community feedbacks and long-term ecosystem responses to multi-factored global change

生态系统 全球变化 植物群落 期限(时间) 生态学 生物 种间竞争 群落结构 生产力 环境资源管理 气候变化 环境科学 生态演替 经济 物理 宏观经济学 量子力学
作者
J. Adam Langley,Bruce A. Hungate
出处
期刊:Aob Plants [Oxford University Press]
卷期号:6: plu035-plu035 被引量:47
标识
DOI:10.1093/aobpla/plu035
摘要

While short-term plant responses to global change are driven by physiological mechanisms, which are represented relatively well by models, long-term ecosystem responses to global change may be determined by shifts in plant community structure resulting from other ecological phenomena such as interspecific interactions, which are represented poorly by models. In single-factor scenarios, plant communities often adjust to increase ecosystem response to that factor. For instance, some early global change experiments showed that elevated CO2 favours plants that respond strongly to elevated CO2, generally amplifying the response of ecosystem productivity to elevated CO2, a positive community feedback. However, most ecosystems are subject to multiple drivers of change, which can complicate the community feedback effect in ways that are more difficult to generalize. Recent studies have shown that (i) shifts in plant community structure cannot be reliably predicted from short-term plant physiological response to global change and (ii) that the ecosystem response to multi-factored change is commonly less than the sum of its parts. Here, we survey results from long-term field manipulations to examine the role community shifts may play in explaining these common findings. We use a simple model to examine the potential importance of community shifts in governing ecosystem response. Empirical evidence and the model demonstrate that with multi-factored change, the ecosystem response depends on community feedbacks, and that the magnitude of ecosystem response will depend on the relationship between plant response to one factor and plant response to another factor. Tradeoffs in the ability of plants to respond positively to, or to tolerate, different global change drivers may underlie generalizable patterns of covariance in responses to different drivers of change across plant taxa. Mechanistic understanding of these patterns will help predict the community feedbacks that determine long-term ecosystem responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多多发布了新的文献求助10
1秒前
3秒前
3秒前
ziguangrong发布了新的文献求助10
4秒前
轻松雁蓉发布了新的文献求助10
5秒前
赵琪发布了新的文献求助10
8秒前
12秒前
13秒前
科研通AI2S应助多多采纳,获得10
14秒前
城南烤地瓜完成签到 ,获得积分10
15秒前
姆姆没买完成签到 ,获得积分10
17秒前
hahamissyu完成签到,获得积分10
19秒前
哈密发布了新的文献求助10
20秒前
彭于晏应助忧伤的南莲采纳,获得30
21秒前
多多完成签到,获得积分10
22秒前
22秒前
轻松雁蓉完成签到,获得积分10
22秒前
23秒前
淳于汲完成签到 ,获得积分10
23秒前
24秒前
小鱼完成签到 ,获得积分10
25秒前
乙醇完成签到 ,获得积分10
26秒前
情怀应助hushan53采纳,获得10
27秒前
佳佳发布了新的文献求助10
27秒前
pumpkin发布了新的文献求助10
28秒前
12345678发布了新的文献求助10
28秒前
CipherSage应助赵琪采纳,获得10
28秒前
XudongHou发布了新的文献求助10
29秒前
lixiaolu完成签到 ,获得积分10
31秒前
31秒前
更深的蓝发布了新的文献求助10
31秒前
大模型应助12345678采纳,获得10
32秒前
32秒前
35秒前
熊敢发布了新的文献求助10
36秒前
40秒前
kin完成签到 ,获得积分10
42秒前
刻苦黎云完成签到,获得积分10
43秒前
43秒前
45秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314323
求助须知:如何正确求助?哪些是违规求助? 2946571
关于积分的说明 8530887
捐赠科研通 2622334
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650855