Species identification of individual trees by combining high resolution LiDAR data with multi‐spectral images

激光雷达 遥感 苏格兰松 每年落叶的 树(集合论) 参考数据 天蓬 树冠 牙冠(牙科) 激光扫描 环境科学 胸径 鉴定(生物学) 冷杉云杉 地理 计算机科学 松属 林业 激光器 数学 生态学 数据库 植物 光学 物理 牙科 考古 数学分析 生物 医学
作者
Johan Holmgren,Åsa Persson,Ulf Söderman
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:29 (5): 1537-1552 被引量:302
标识
DOI:10.1080/01431160701736471
摘要

Abstract The objectives of this study were to identify useful predictive factors for tree species identification of individual trees and to compare classifications based on a combination of LiDAR data and multi‐spectral images with classification by the use of each individual data source. Crown segments derived from LiDAR data were mapped to multi‐spectral images for extraction of spectral data within individual tree crowns. Several features, related to height distribution of laser returns in the canopy, canopy shape, proportion of different types of laser returns, and intensity of laser returns, were derived from LiDAR data. Data from a test site in southern Sweden were used (lat. 58°30′ N, long. 13°40′ E). The forest consisted of Norway spruce (Picea abies), Scots pine (Pinus sylvestris), and deciduous trees. Classification into these three tree species groups was validated for 1711 trees that had been detected in LiDAR data within 14 field plots (sizes of 20×50 m2 or 80×80 m2). The LiDAR data were acquired by the TopEye MkII system (50 LiDAR measurements per m2) and the multi‐spectral images were taken by the Zeiss/Intergraph Digital Mapping Camera. The overall classification accuracy was 96% when both data sources were combined. Acknowledgements This work was financed by the Carl Tryggers Foundation (J. Holmgren) and by the Swedish Armed Forces Research and Technology Development Program (U. Söderman and Å. Persson). The latter were part of funding for a project at the Swedish Defence Research Establishment (FOI) aiming for detailed mapping using laser scanning. The field data and remote sensing data were financed by the Hildur and Sven Wingquist Foundation. We would also like to thank TopEye for delivering the LIDAR data and the Swedish National Land Survey for delivering the DMC images. The authors would like to thank Heather Reese for comments on the manuscript and for improving the language.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Srishti完成签到,获得积分10
刚刚
taotao发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
我是老大应助野椒搞科研采纳,获得10
3秒前
Shan发布了新的文献求助10
3秒前
哈哈哈发布了新的文献求助10
3秒前
共享精神应助豆芽采纳,获得10
3秒前
3秒前
小黄在忙发布了新的文献求助10
4秒前
liningyao发布了新的文献求助10
4秒前
4秒前
4秒前
华仔应助222333采纳,获得10
4秒前
科研通AI6应助啊棕采纳,获得10
4秒前
123发布了新的文献求助10
5秒前
wanci应助Aaaaa采纳,获得10
5秒前
像只猫完成签到,获得积分10
5秒前
5秒前
传奇3应助996采纳,获得10
5秒前
汪静军发布了新的文献求助10
5秒前
张靖发布了新的文献求助10
6秒前
hhh发布了新的文献求助10
6秒前
狄拉克汉堡包完成签到 ,获得积分10
6秒前
TJTerrence发布了新的文献求助200
7秒前
momoni完成签到 ,获得积分10
7秒前
sakualua完成签到,获得积分10
7秒前
老迟到的乌冬面关注了科研通微信公众号
7秒前
ps发布了新的文献求助10
7秒前
8秒前
Xxx发布了新的文献求助10
8秒前
所所应助jerry采纳,获得10
8秒前
8秒前
干饭虫应助茉莉奶绿采纳,获得10
9秒前
likeit发布了新的文献求助10
9秒前
sakualua发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960295
求助须知:如何正确求助?哪些是违规求助? 4220812
关于积分的说明 13144476
捐赠科研通 4004657
什么是DOI,文献DOI怎么找? 2191579
邀请新用户注册赠送积分活动 1205760
关于科研通互助平台的介绍 1116920