Species identification of individual trees by combining high resolution LiDAR data with multi‐spectral images

激光雷达 遥感 苏格兰松 每年落叶的 树(集合论) 参考数据 天蓬 树冠 牙冠(牙科) 激光扫描 环境科学 胸径 鉴定(生物学) 冷杉云杉 地理 计算机科学 松属 林业 激光器 数学 生态学 数据库 植物 光学 物理 牙科 考古 数学分析 生物 医学
作者
Johan Holmgren,Åsa Persson,Ulf Söderman
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:29 (5): 1537-1552 被引量:302
标识
DOI:10.1080/01431160701736471
摘要

Abstract The objectives of this study were to identify useful predictive factors for tree species identification of individual trees and to compare classifications based on a combination of LiDAR data and multi‐spectral images with classification by the use of each individual data source. Crown segments derived from LiDAR data were mapped to multi‐spectral images for extraction of spectral data within individual tree crowns. Several features, related to height distribution of laser returns in the canopy, canopy shape, proportion of different types of laser returns, and intensity of laser returns, were derived from LiDAR data. Data from a test site in southern Sweden were used (lat. 58°30′ N, long. 13°40′ E). The forest consisted of Norway spruce (Picea abies), Scots pine (Pinus sylvestris), and deciduous trees. Classification into these three tree species groups was validated for 1711 trees that had been detected in LiDAR data within 14 field plots (sizes of 20×50 m2 or 80×80 m2). The LiDAR data were acquired by the TopEye MkII system (50 LiDAR measurements per m2) and the multi‐spectral images were taken by the Zeiss/Intergraph Digital Mapping Camera. The overall classification accuracy was 96% when both data sources were combined. Acknowledgements This work was financed by the Carl Tryggers Foundation (J. Holmgren) and by the Swedish Armed Forces Research and Technology Development Program (U. Söderman and Å. Persson). The latter were part of funding for a project at the Swedish Defence Research Establishment (FOI) aiming for detailed mapping using laser scanning. The field data and remote sensing data were financed by the Hildur and Sven Wingquist Foundation. We would also like to thank TopEye for delivering the LIDAR data and the Swedish National Land Survey for delivering the DMC images. The authors would like to thank Heather Reese for comments on the manuscript and for improving the language.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Muran完成签到,获得积分0
1秒前
桐桐应助蜡笔小新采纳,获得10
1秒前
头头完成签到,获得积分10
1秒前
1秒前
wangq完成签到,获得积分10
2秒前
rlix完成签到,获得积分20
2秒前
biomichael完成签到,获得积分10
2秒前
2秒前
2秒前
FAN完成签到,获得积分10
3秒前
ning完成签到,获得积分10
3秒前
共享精神应助Paddi采纳,获得10
3秒前
瞌睡社畜发布了新的文献求助10
4秒前
跳跳虎完成签到 ,获得积分10
4秒前
nini完成签到,获得积分10
4秒前
英俊的铭应助愉快绿蓉采纳,获得50
5秒前
5秒前
5秒前
6秒前
朱桂林完成签到,获得积分10
6秒前
小怪兽发布了新的文献求助10
6秒前
6秒前
7秒前
华仔应助Finley采纳,获得10
8秒前
小琪猪发布了新的文献求助10
8秒前
大晟归来发布了新的文献求助10
8秒前
懵懂的毛豆完成签到,获得积分10
9秒前
超级的飞飞完成签到,获得积分10
9秒前
9秒前
樱香音子发布了新的文献求助30
9秒前
fsky发布了新的文献求助10
10秒前
Shen发布了新的文献求助10
10秒前
俊秀的半雪完成签到,获得积分10
10秒前
22完成签到 ,获得积分10
11秒前
Orange应助鲸鲸采纳,获得10
11秒前
12秒前
12秒前
13秒前
月月鸟完成签到 ,获得积分10
13秒前
研友_Z11kkZ完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635