Species identification of individual trees by combining high resolution LiDAR data with multi‐spectral images

激光雷达 遥感 苏格兰松 每年落叶的 树(集合论) 参考数据 天蓬 树冠 牙冠(牙科) 激光扫描 环境科学 胸径 鉴定(生物学) 冷杉云杉 地理 计算机科学 松属 林业 激光器 数学 生态学 数据库 植物 光学 物理 牙科 考古 数学分析 生物 医学
作者
Johan Holmgren,Åsa Persson,Ulf Söderman
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:29 (5): 1537-1552 被引量:302
标识
DOI:10.1080/01431160701736471
摘要

Abstract The objectives of this study were to identify useful predictive factors for tree species identification of individual trees and to compare classifications based on a combination of LiDAR data and multi‐spectral images with classification by the use of each individual data source. Crown segments derived from LiDAR data were mapped to multi‐spectral images for extraction of spectral data within individual tree crowns. Several features, related to height distribution of laser returns in the canopy, canopy shape, proportion of different types of laser returns, and intensity of laser returns, were derived from LiDAR data. Data from a test site in southern Sweden were used (lat. 58°30′ N, long. 13°40′ E). The forest consisted of Norway spruce (Picea abies), Scots pine (Pinus sylvestris), and deciduous trees. Classification into these three tree species groups was validated for 1711 trees that had been detected in LiDAR data within 14 field plots (sizes of 20×50 m2 or 80×80 m2). The LiDAR data were acquired by the TopEye MkII system (50 LiDAR measurements per m2) and the multi‐spectral images were taken by the Zeiss/Intergraph Digital Mapping Camera. The overall classification accuracy was 96% when both data sources were combined. Acknowledgements This work was financed by the Carl Tryggers Foundation (J. Holmgren) and by the Swedish Armed Forces Research and Technology Development Program (U. Söderman and Å. Persson). The latter were part of funding for a project at the Swedish Defence Research Establishment (FOI) aiming for detailed mapping using laser scanning. The field data and remote sensing data were financed by the Hildur and Sven Wingquist Foundation. We would also like to thank TopEye for delivering the LIDAR data and the Swedish National Land Survey for delivering the DMC images. The authors would like to thank Heather Reese for comments on the manuscript and for improving the language.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呀呀呀呀发布了新的文献求助30
1秒前
1秒前
Ha哈完成签到,获得积分10
2秒前
YXYWZMSZ发布了新的文献求助10
3秒前
无花果应助jiaolu采纳,获得10
3秒前
闪电小子发布了新的文献求助10
3秒前
今后应助闫伯涵采纳,获得10
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
小马甲应助菅露露采纳,获得10
5秒前
Ha哈发布了新的文献求助10
5秒前
Ni发布了新的文献求助10
6秒前
6秒前
海风奕婕发布了新的文献求助20
6秒前
7秒前
7秒前
8秒前
乐开欣完成签到,获得积分10
8秒前
tamaco发布了新的文献求助10
8秒前
研友_Lw44Gn完成签到,获得积分0
8秒前
研友_nxwmeL完成签到,获得积分10
9秒前
dafhluih发布了新的文献求助10
10秒前
未知数发布了新的文献求助10
10秒前
0128lun发布了新的文献求助10
10秒前
Orange应助霜打了的葡萄采纳,获得10
10秒前
bkagyin应助wzwz采纳,获得10
10秒前
11秒前
科研小肖完成签到,获得积分10
11秒前
小刘发布了新的文献求助10
12秒前
顾矜应助燕知南采纳,获得10
12秒前
唠叨的傲薇完成签到,获得积分10
12秒前
画风湖湘卷完成签到,获得积分10
14秒前
脑洞疼应助ThoseRangers0624采纳,获得30
14秒前
一一完成签到 ,获得积分10
15秒前
Fan发布了新的文献求助10
15秒前
轻松翠丝完成签到,获得积分20
15秒前
17秒前
高分求助中
Lire en communiste 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168966
求助须知:如何正确求助?哪些是违规求助? 2820245
关于积分的说明 7929811
捐赠科研通 2480332
什么是DOI,文献DOI怎么找? 1321320
科研通“疑难数据库(出版商)”最低求助积分说明 633191
版权声明 602497