A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities

无线电技术 体素 医学 人工智能 特征选择 放射科 模式识别(心理学) 计算机科学 核医学
作者
Martin Vallières,Carolyn Freeman,Sonia Skamene,Issam El Naqa
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:60 (14): 5471-5496 被引量:772
标识
DOI:10.1088/0031-9155/60/14/5471
摘要

This study aims at developing a joint FDG-PET and MRI texture-based model for the early evaluation of lung metastasis risk in soft-tissue sarcomas (STSs). We investigate if the creation of new composite textures from the combination of FDG-PET and MR imaging information could better identify aggressive tumours. Towards this goal, a cohort of 51 patients with histologically proven STSs of the extremities was retrospectively evaluated. All patients had pre-treatment FDG-PET and MRI scans comprised of T1-weighted and T2-weighted fat-suppression sequences (T2FS). Nine non-texture features (SUV metrics and shape features) and forty-one texture features were extracted from the tumour region of separate (FDG-PET, T1 and T2FS) and fused (FDG-PET/T1 and FDG-PET/T2FS) scans. Volume fusion of the FDG-PET and MRI scans was implemented using the wavelet transform. The influence of six different extraction parameters on the predictive value of textures was investigated. The incorporation of features into multivariable models was performed using logistic regression. The multivariable modeling strategy involved imbalance-adjusted bootstrap resampling in the following four steps leading to final prediction model construction: (1) feature set reduction; (2) feature selection; (3) prediction performance estimation; and (4) computation of model coefficients. Univariate analysis showed that the isotropic voxel size at which texture features were extracted had the most impact on predictive value. In multivariable analysis, texture features extracted from fused scans significantly outperformed those from separate scans in terms of lung metastases prediction estimates. The best performance was obtained using a combination of four texture features extracted from FDG-PET/T1 and FDG-PET/T2FS scans. This model reached an area under the receiver-operating characteristic curve of 0.984 ± 0.002, a sensitivity of 0.955 ± 0.006, and a specificity of 0.926 ± 0.004 in bootstrapping evaluations. Ultimately, lung metastasis risk assessment at diagnosis of STSs could improve patient outcomes by allowing better treatment adaptation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
白文博发布了新的文献求助10
2秒前
所所应助包容的幻梅采纳,获得10
3秒前
加油完成签到,获得积分10
4秒前
iwsaml发布了新的文献求助10
5秒前
NZH关闭了NZH文献求助
6秒前
华仔应助华hua采纳,获得10
7秒前
7秒前
川川完成签到 ,获得积分10
9秒前
11秒前
12秒前
星辰大海应助麦兜2001采纳,获得10
12秒前
研友_8oYg4n完成签到,获得积分10
14秒前
得鹿梦鱼完成签到,获得积分10
14秒前
令狐远航完成签到,获得积分10
16秒前
16秒前
小李完成签到,获得积分10
17秒前
hikevin126完成签到,获得积分10
18秒前
19秒前
多发文章早毕业完成签到 ,获得积分10
19秒前
20秒前
鄂霸发布了新的文献求助10
21秒前
LQY完成签到,获得积分10
22秒前
yar应助勤奋菠萝采纳,获得10
22秒前
23秒前
彩色德天发布了新的文献求助10
23秒前
24秒前
25秒前
27秒前
lll完成签到 ,获得积分20
27秒前
鄂霸完成签到,获得积分10
27秒前
Valent发布了新的文献求助100
28秒前
星河zp完成签到 ,获得积分10
29秒前
29秒前
杨琴发布了新的文献求助10
30秒前
大佬发布了新的文献求助10
31秒前
34秒前
Shinchan完成签到 ,获得积分10
34秒前
35秒前
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316645
求助须知:如何正确求助?哪些是违规求助? 2948401
关于积分的说明 8540350
捐赠科研通 2624268
什么是DOI,文献DOI怎么找? 1436059
科研通“疑难数据库(出版商)”最低求助积分说明 665770
邀请新用户注册赠送积分活动 651694