A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities

无线电技术 体素 医学 人工智能 特征选择 放射科 模式识别(心理学) 计算机科学 核医学
作者
Martin Vallières,Carolyn Freeman,Sonia Skamene,Issam El Naqa
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:60 (14): 5471-5496 被引量:844
标识
DOI:10.1088/0031-9155/60/14/5471
摘要

This study aims at developing a joint FDG-PET and MRI texture-based model for the early evaluation of lung metastasis risk in soft-tissue sarcomas (STSs). We investigate if the creation of new composite textures from the combination of FDG-PET and MR imaging information could better identify aggressive tumours. Towards this goal, a cohort of 51 patients with histologically proven STSs of the extremities was retrospectively evaluated. All patients had pre-treatment FDG-PET and MRI scans comprised of T1-weighted and T2-weighted fat-suppression sequences (T2FS). Nine non-texture features (SUV metrics and shape features) and forty-one texture features were extracted from the tumour region of separate (FDG-PET, T1 and T2FS) and fused (FDG-PET/T1 and FDG-PET/T2FS) scans. Volume fusion of the FDG-PET and MRI scans was implemented using the wavelet transform. The influence of six different extraction parameters on the predictive value of textures was investigated. The incorporation of features into multivariable models was performed using logistic regression. The multivariable modeling strategy involved imbalance-adjusted bootstrap resampling in the following four steps leading to final prediction model construction: (1) feature set reduction; (2) feature selection; (3) prediction performance estimation; and (4) computation of model coefficients. Univariate analysis showed that the isotropic voxel size at which texture features were extracted had the most impact on predictive value. In multivariable analysis, texture features extracted from fused scans significantly outperformed those from separate scans in terms of lung metastases prediction estimates. The best performance was obtained using a combination of four texture features extracted from FDG-PET/T1 and FDG-PET/T2FS scans. This model reached an area under the receiver-operating characteristic curve of 0.984 ± 0.002, a sensitivity of 0.955 ± 0.006, and a specificity of 0.926 ± 0.004 in bootstrapping evaluations. Ultimately, lung metastasis risk assessment at diagnosis of STSs could improve patient outcomes by allowing better treatment adaptation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiongguoguo完成签到,获得积分20
1秒前
1秒前
王佳亮完成签到,获得积分10
5秒前
sysi完成签到 ,获得积分10
6秒前
9秒前
康康完成签到 ,获得积分10
9秒前
12秒前
yehuaiyu完成签到,获得积分10
13秒前
哥哥发布了新的文献求助10
15秒前
yss发布了新的文献求助10
18秒前
研友_8K2QJZ完成签到,获得积分10
18秒前
风情阿荣完成签到 ,获得积分10
18秒前
21秒前
彭于晏应助yss采纳,获得10
24秒前
ycd完成签到,获得积分10
24秒前
liu砖家完成签到,获得积分20
27秒前
genius完成签到 ,获得积分10
29秒前
woshiwuziq完成签到 ,获得积分10
34秒前
风趣朝雪完成签到,获得积分10
38秒前
从容的水壶完成签到 ,获得积分10
39秒前
秋秋完成签到 ,获得积分10
43秒前
kk完成签到,获得积分10
43秒前
铅笔995完成签到,获得积分10
45秒前
小二郎应助nickel采纳,获得10
47秒前
48秒前
50秒前
吉吉完成签到,获得积分10
51秒前
liu砖家发布了新的文献求助10
53秒前
54秒前
凡凡完成签到,获得积分10
54秒前
Karry完成签到 ,获得积分10
56秒前
nickel发布了新的文献求助10
1分钟前
xxm完成签到 ,获得积分10
1分钟前
娅娃儿完成签到 ,获得积分10
1分钟前
1分钟前
nickel完成签到,获得积分10
1分钟前
整箱完成签到 ,获得积分10
1分钟前
蔡从安完成签到,获得积分20
1分钟前
橙红发布了新的文献求助10
1分钟前
弧光完成签到 ,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325418
求助须知:如何正确求助?哪些是违规求助? 4465883
关于积分的说明 13895000
捐赠科研通 4358174
什么是DOI,文献DOI怎么找? 2393938
邀请新用户注册赠送积分活动 1387356
关于科研通互助平台的介绍 1358111