亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities

无线电技术 体素 医学 人工智能 特征选择 放射科 模式识别(心理学) 计算机科学 核医学
作者
Martin Vallières,Carolyn Freeman,Sonia Skamene,Issam El Naqa
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:60 (14): 5471-5496 被引量:844
标识
DOI:10.1088/0031-9155/60/14/5471
摘要

This study aims at developing a joint FDG-PET and MRI texture-based model for the early evaluation of lung metastasis risk in soft-tissue sarcomas (STSs). We investigate if the creation of new composite textures from the combination of FDG-PET and MR imaging information could better identify aggressive tumours. Towards this goal, a cohort of 51 patients with histologically proven STSs of the extremities was retrospectively evaluated. All patients had pre-treatment FDG-PET and MRI scans comprised of T1-weighted and T2-weighted fat-suppression sequences (T2FS). Nine non-texture features (SUV metrics and shape features) and forty-one texture features were extracted from the tumour region of separate (FDG-PET, T1 and T2FS) and fused (FDG-PET/T1 and FDG-PET/T2FS) scans. Volume fusion of the FDG-PET and MRI scans was implemented using the wavelet transform. The influence of six different extraction parameters on the predictive value of textures was investigated. The incorporation of features into multivariable models was performed using logistic regression. The multivariable modeling strategy involved imbalance-adjusted bootstrap resampling in the following four steps leading to final prediction model construction: (1) feature set reduction; (2) feature selection; (3) prediction performance estimation; and (4) computation of model coefficients. Univariate analysis showed that the isotropic voxel size at which texture features were extracted had the most impact on predictive value. In multivariable analysis, texture features extracted from fused scans significantly outperformed those from separate scans in terms of lung metastases prediction estimates. The best performance was obtained using a combination of four texture features extracted from FDG-PET/T1 and FDG-PET/T2FS scans. This model reached an area under the receiver-operating characteristic curve of 0.984 ± 0.002, a sensitivity of 0.955 ± 0.006, and a specificity of 0.926 ± 0.004 in bootstrapping evaluations. Ultimately, lung metastasis risk assessment at diagnosis of STSs could improve patient outcomes by allowing better treatment adaptation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yini应助科研通管家采纳,获得10
9秒前
45秒前
忘忧Aquarius完成签到,获得积分10
1分钟前
1分钟前
xinxin完成签到,获得积分10
1分钟前
Mingyue123完成签到,获得积分10
1分钟前
Yini应助科研通管家采纳,获得10
2分钟前
2分钟前
玛琳卡迪马完成签到 ,获得积分10
2分钟前
xuexue0001发布了新的文献求助10
2分钟前
xiaofeiyan完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助150
3分钟前
3分钟前
yu发布了新的文献求助10
3分钟前
cao_bq完成签到,获得积分10
4分钟前
GingerF应助科研通管家采纳,获得150
4分钟前
4分钟前
4分钟前
ataybabdallah完成签到,获得积分10
4分钟前
小新小新完成签到 ,获得积分10
4分钟前
初见完成签到,获得积分20
4分钟前
震南发布了新的文献求助10
4分钟前
Krim完成签到 ,获得积分0
5分钟前
隐形曼青应助完美的书雁采纳,获得10
5分钟前
6分钟前
6分钟前
完美的书雁完成签到,获得积分10
6分钟前
Mong那粒沙发布了新的文献求助100
6分钟前
Yini应助科研通管家采纳,获得10
6分钟前
6分钟前
桐桐应助Mong那粒沙采纳,获得10
6分钟前
yu完成签到 ,获得积分10
6分钟前
6分钟前
酷波er应助keyan采纳,获得10
7分钟前
在水一方应助mayocoh采纳,获得10
7分钟前
8分钟前
8分钟前
mayocoh发布了新的文献求助10
8分钟前
Yini应助科研通管家采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4974175
求助须知:如何正确求助?哪些是违规求助? 4229435
关于积分的说明 13172580
捐赠科研通 4018526
什么是DOI,文献DOI怎么找? 2198955
邀请新用户注册赠送积分活动 1211545
关于科研通互助平台的介绍 1126807