A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities

无线电技术 体素 医学 人工智能 特征选择 放射科 模式识别(心理学) 计算机科学 核医学
作者
Martin Vallières,Carolyn Freeman,Sonia Skamene,Issam El Naqa
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:60 (14): 5471-5496 被引量:824
标识
DOI:10.1088/0031-9155/60/14/5471
摘要

This study aims at developing a joint FDG-PET and MRI texture-based model for the early evaluation of lung metastasis risk in soft-tissue sarcomas (STSs). We investigate if the creation of new composite textures from the combination of FDG-PET and MR imaging information could better identify aggressive tumours. Towards this goal, a cohort of 51 patients with histologically proven STSs of the extremities was retrospectively evaluated. All patients had pre-treatment FDG-PET and MRI scans comprised of T1-weighted and T2-weighted fat-suppression sequences (T2FS). Nine non-texture features (SUV metrics and shape features) and forty-one texture features were extracted from the tumour region of separate (FDG-PET, T1 and T2FS) and fused (FDG-PET/T1 and FDG-PET/T2FS) scans. Volume fusion of the FDG-PET and MRI scans was implemented using the wavelet transform. The influence of six different extraction parameters on the predictive value of textures was investigated. The incorporation of features into multivariable models was performed using logistic regression. The multivariable modeling strategy involved imbalance-adjusted bootstrap resampling in the following four steps leading to final prediction model construction: (1) feature set reduction; (2) feature selection; (3) prediction performance estimation; and (4) computation of model coefficients. Univariate analysis showed that the isotropic voxel size at which texture features were extracted had the most impact on predictive value. In multivariable analysis, texture features extracted from fused scans significantly outperformed those from separate scans in terms of lung metastases prediction estimates. The best performance was obtained using a combination of four texture features extracted from FDG-PET/T1 and FDG-PET/T2FS scans. This model reached an area under the receiver-operating characteristic curve of 0.984 ± 0.002, a sensitivity of 0.955 ± 0.006, and a specificity of 0.926 ± 0.004 in bootstrapping evaluations. Ultimately, lung metastasis risk assessment at diagnosis of STSs could improve patient outcomes by allowing better treatment adaptation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
WTT发布了新的文献求助10
1秒前
1秒前
笑点低的碧琴完成签到,获得积分10
1秒前
1秒前
1秒前
复杂听筠完成签到 ,获得积分10
2秒前
只是个昵称完成签到,获得积分20
2秒前
成就萤完成签到,获得积分10
2秒前
zihaolee完成签到 ,获得积分10
3秒前
3秒前
及禾发布了新的文献求助10
3秒前
WQQ完成签到,获得积分10
4秒前
大胆隶发布了新的文献求助10
4秒前
许子健发布了新的文献求助10
5秒前
MichelleLu发布了新的文献求助10
5秒前
6秒前
fanglin123完成签到,获得积分10
6秒前
Owen应助王哪跑12采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
隐形曼青应助吴志新采纳,获得10
7秒前
7秒前
7秒前
7秒前
清爽千亦关注了科研通微信公众号
7秒前
冷茗完成签到,获得积分10
7秒前
临风浩歌完成签到,获得积分10
7秒前
忐忑的雪糕完成签到 ,获得积分0
8秒前
8秒前
心旷神怡完成签到,获得积分10
8秒前
生动从寒完成签到,获得积分10
9秒前
大方小白发布了新的文献求助10
9秒前
领导范儿应助李玲玲采纳,获得10
10秒前
10秒前
大胆隶完成签到,获得积分10
11秒前
11秒前
yyyhhh发布了新的文献求助10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646