A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities

无线电技术 体素 医学 人工智能 特征选择 放射科 模式识别(心理学) 计算机科学 核医学
作者
Martin Vallières,Carolyn Freeman,Sonia Skamene,Issam El Naqa
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:60 (14): 5471-5496 被引量:824
标识
DOI:10.1088/0031-9155/60/14/5471
摘要

This study aims at developing a joint FDG-PET and MRI texture-based model for the early evaluation of lung metastasis risk in soft-tissue sarcomas (STSs). We investigate if the creation of new composite textures from the combination of FDG-PET and MR imaging information could better identify aggressive tumours. Towards this goal, a cohort of 51 patients with histologically proven STSs of the extremities was retrospectively evaluated. All patients had pre-treatment FDG-PET and MRI scans comprised of T1-weighted and T2-weighted fat-suppression sequences (T2FS). Nine non-texture features (SUV metrics and shape features) and forty-one texture features were extracted from the tumour region of separate (FDG-PET, T1 and T2FS) and fused (FDG-PET/T1 and FDG-PET/T2FS) scans. Volume fusion of the FDG-PET and MRI scans was implemented using the wavelet transform. The influence of six different extraction parameters on the predictive value of textures was investigated. The incorporation of features into multivariable models was performed using logistic regression. The multivariable modeling strategy involved imbalance-adjusted bootstrap resampling in the following four steps leading to final prediction model construction: (1) feature set reduction; (2) feature selection; (3) prediction performance estimation; and (4) computation of model coefficients. Univariate analysis showed that the isotropic voxel size at which texture features were extracted had the most impact on predictive value. In multivariable analysis, texture features extracted from fused scans significantly outperformed those from separate scans in terms of lung metastases prediction estimates. The best performance was obtained using a combination of four texture features extracted from FDG-PET/T1 and FDG-PET/T2FS scans. This model reached an area under the receiver-operating characteristic curve of 0.984 ± 0.002, a sensitivity of 0.955 ± 0.006, and a specificity of 0.926 ± 0.004 in bootstrapping evaluations. Ultimately, lung metastasis risk assessment at diagnosis of STSs could improve patient outcomes by allowing better treatment adaptation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘文宇发布了新的文献求助10
刚刚
柯友卉完成签到 ,获得积分10
刚刚
ryen完成签到,获得积分10
1秒前
星辰大海应助八卦巧克力采纳,获得10
1秒前
sube完成签到,获得积分10
1秒前
2秒前
易达发布了新的文献求助10
2秒前
科研乞丐应助陈澜采纳,获得20
2秒前
3秒前
研友_VZG7GZ应助JaesXX采纳,获得10
4秒前
4秒前
5秒前
顾矜应助www采纳,获得10
6秒前
活力的映易完成签到,获得积分10
7秒前
8秒前
言无间发布了新的文献求助10
8秒前
JxJ完成签到,获得积分10
9秒前
9秒前
一枚小神经病完成签到,获得积分20
10秒前
小二郎应助Sheya采纳,获得10
12秒前
无辜的白秋完成签到,获得积分10
12秒前
我们完成签到 ,获得积分10
13秒前
大模型应助q792309106采纳,获得10
14秒前
爆米花应助Kekela1739采纳,获得10
15秒前
杨昕发布了新的文献求助30
15秒前
15秒前
安详的自中完成签到,获得积分10
15秒前
zhangyu应助勤恳立轩采纳,获得10
17秒前
18秒前
沙漠大雕完成签到,获得积分10
19秒前
19秒前
蒋50完成签到,获得积分10
20秒前
陈陈发布了新的文献求助10
22秒前
奋斗的冬云完成签到,获得积分10
22秒前
小伍发布了新的文献求助10
23秒前
文艺书芹发布了新的文献求助10
24秒前
momofengfeng应助杨昕采纳,获得30
24秒前
25秒前
共享精神应助科研通管家采纳,获得10
27秒前
魏吴郑应助科研通管家采纳,获得10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014