A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities

无线电技术 体素 医学 人工智能 特征选择 放射科 模式识别(心理学) 计算机科学 核医学
作者
Vallières M,C R Freeman,S R. Skamene,I. El Naqa,Vallières M,C R Freeman,S R. Skamene,I. El Naqa
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:60 (14): 5471-5496 被引量:864
标识
DOI:10.1088/0031-9155/60/14/5471
摘要

This study aims at developing a joint FDG-PET and MRI texture-based model for the early evaluation of lung metastasis risk in soft-tissue sarcomas (STSs). We investigate if the creation of new composite textures from the combination of FDG-PET and MR imaging information could better identify aggressive tumours. Towards this goal, a cohort of 51 patients with histologically proven STSs of the extremities was retrospectively evaluated. All patients had pre-treatment FDG-PET and MRI scans comprised of T1-weighted and T2-weighted fat-suppression sequences (T2FS). Nine non-texture features (SUV metrics and shape features) and forty-one texture features were extracted from the tumour region of separate (FDG-PET, T1 and T2FS) and fused (FDG-PET/T1 and FDG-PET/T2FS) scans. Volume fusion of the FDG-PET and MRI scans was implemented using the wavelet transform. The influence of six different extraction parameters on the predictive value of textures was investigated. The incorporation of features into multivariable models was performed using logistic regression. The multivariable modeling strategy involved imbalance-adjusted bootstrap resampling in the following four steps leading to final prediction model construction: (1) feature set reduction; (2) feature selection; (3) prediction performance estimation; and (4) computation of model coefficients. Univariate analysis showed that the isotropic voxel size at which texture features were extracted had the most impact on predictive value. In multivariable analysis, texture features extracted from fused scans significantly outperformed those from separate scans in terms of lung metastases prediction estimates. The best performance was obtained using a combination of four texture features extracted from FDG-PET/T1 and FDG-PET/T2FS scans. This model reached an area under the receiver-operating characteristic curve of 0.984 ± 0.002, a sensitivity of 0.955 ± 0.006, and a specificity of 0.926 ± 0.004 in bootstrapping evaluations. Ultimately, lung metastasis risk assessment at diagnosis of STSs could improve patient outcomes by allowing better treatment adaptation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研工作者采纳,获得10
刚刚
王硕硕发布了新的文献求助10
刚刚
刚刚
刚刚
哒哒哒发布了新的文献求助10
1秒前
Hello应助lky采纳,获得10
1秒前
香蕉觅云应助花朝十一采纳,获得10
1秒前
2秒前
123完成签到,获得积分10
2秒前
英俊的铭应助zhzhzh采纳,获得10
2秒前
幸福烤鸡发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
李健应助务实的机器猫采纳,获得10
4秒前
4秒前
4秒前
4秒前
哈皮发布了新的文献求助10
4秒前
5秒前
刘麦子完成签到,获得积分10
5秒前
xiongyh10发布了新的文献求助10
5秒前
5秒前
t东流水完成签到,获得积分10
6秒前
6秒前
6秒前
peng完成签到,获得积分10
6秒前
6秒前
丘比特应助呆萌冷风采纳,获得10
6秒前
好运设计完成签到,获得积分10
7秒前
李健应助aldeheby采纳,获得10
7秒前
领导范儿应助xixi采纳,获得10
7秒前
Chunlan发布了新的文献求助10
8秒前
nisun完成签到,获得积分10
8秒前
8秒前
粗犷的向珊完成签到 ,获得积分10
8秒前
快乐周周关注了科研通微信公众号
8秒前
8秒前
8秒前
Aurinse发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894