Analysis of monotonic greening and browning trends from global NDVI time-series

归一化差异植被指数 绿化 季节性 植被(病理学) 物候学 环境科学 时间序列 趋势分析 系列(地层学) 线性模型 生长季节 遥感 自然地理学 统计 气候学 气候变化 数学 地理 生态学 生物 医学 地质学 病理 古生物学
作者
Rogier de Jong,Sytze de Bruin,Allard de Wit,Michael E. Schaepman,David Dent
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:115 (2): 692-702 被引量:567
标识
DOI:10.1016/j.rse.2010.10.011
摘要

Remotely sensed vegetation indices are widely used to detect greening and browning trends; especially the global coverage of time-series normalized difference vegetation index (NDVI) data which are available from 1981. Seasonality and serial auto-correlation in the data have previously been dealt with by integrating the data to annual values; as an alternative to reducing the temporal resolution, we apply harmonic analyses and non-parametric trend tests to the GIMMS NDVI dataset (1981–2006). Using the complete dataset, greening and browning trends were analyzed using a linear model corrected for seasonality by subtracting the seasonal component, and a seasonal non-parametric model. In a third approach, phenological shift and variation in length of growing season were accounted for by analyzing the time-series using vegetation development stages rather than calendar days. Results differed substantially between the models, even though the input data were the same. Prominent regional greening trends identified by several other studies were confirmed but the models were inconsistent in areas with weak trends. The linear model using data corrected for seasonality showed similar trend slopes to those described in previous work using linear models on yearly mean values. The non-parametric models demonstrated the significant influence of variations in phenology; accounting for these variations should yield more robust trend analyses and better understanding of vegetation trends.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
影zi发布了新的文献求助10
1秒前
传奇3应助Balance Man采纳,获得10
1秒前
ceeray23发布了新的文献求助20
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得30
2秒前
lizong应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
Dali应助沉静的青曼采纳,获得10
3秒前
香蕉觅云应助宓广缘采纳,获得10
4秒前
4秒前
4秒前
爱听歌的断天完成签到,获得积分10
4秒前
5秒前
ouou完成签到,获得积分10
5秒前
5秒前
xiaolaoshu完成签到,获得积分10
6秒前
6秒前
nicholas关注了科研通微信公众号
6秒前
6秒前
陈龙发布了新的文献求助10
6秒前
希望天下0贩的0应助明明采纳,获得10
7秒前
直率清炎发布了新的文献求助10
7秒前
aikka发布了新的文献求助10
8秒前
搜集达人应助JUSTDOIT采纳,获得10
8秒前
9秒前
chenli发布了新的文献求助30
9秒前
搜集达人应助单纯清采纳,获得10
9秒前
耍酷靖荷完成签到,获得积分10
9秒前
DS完成签到,获得积分10
9秒前
10秒前
10秒前
桐桐应助zmy采纳,获得10
10秒前
petli发布了新的文献求助10
10秒前
NPC-CBI完成签到,获得积分10
11秒前
陈伊梦发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572857
求助须知:如何正确求助?哪些是违规求助? 4658866
关于积分的说明 14723060
捐赠科研通 4598750
什么是DOI,文献DOI怎么找? 2523940
邀请新用户注册赠送积分活动 1494624
关于科研通互助平台的介绍 1464638