Analysis of monotonic greening and browning trends from global NDVI time-series

归一化差异植被指数 绿化 季节性 植被(病理学) 物候学 环境科学 时间序列 趋势分析 系列(地层学) 线性模型 生长季节 遥感 自然地理学 统计 气候学 气候变化 数学 地理 生态学 古生物学 地质学 生物 医学 病理
作者
Rogier de Jong,Sytze de Bruin,Allard de Wit,Michael E. Schaepman,David Dent
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:115 (2): 692-702 被引量:567
标识
DOI:10.1016/j.rse.2010.10.011
摘要

Remotely sensed vegetation indices are widely used to detect greening and browning trends; especially the global coverage of time-series normalized difference vegetation index (NDVI) data which are available from 1981. Seasonality and serial auto-correlation in the data have previously been dealt with by integrating the data to annual values; as an alternative to reducing the temporal resolution, we apply harmonic analyses and non-parametric trend tests to the GIMMS NDVI dataset (1981–2006). Using the complete dataset, greening and browning trends were analyzed using a linear model corrected for seasonality by subtracting the seasonal component, and a seasonal non-parametric model. In a third approach, phenological shift and variation in length of growing season were accounted for by analyzing the time-series using vegetation development stages rather than calendar days. Results differed substantially between the models, even though the input data were the same. Prominent regional greening trends identified by several other studies were confirmed but the models were inconsistent in areas with weak trends. The linear model using data corrected for seasonality showed similar trend slopes to those described in previous work using linear models on yearly mean values. The non-parametric models demonstrated the significant influence of variations in phenology; accounting for these variations should yield more robust trend analyses and better understanding of vegetation trends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
司徒文青应助Mid采纳,获得30
2秒前
华仔应助李秋静采纳,获得10
2秒前
buno应助大脸妹采纳,获得10
2秒前
Owen应助喵酱采纳,获得30
2秒前
胖豆发布了新的文献求助10
2秒前
今后应助科研小白菜采纳,获得10
3秒前
orixero应助欢呼的明雪采纳,获得10
3秒前
4秒前
my完成签到 ,获得积分10
5秒前
duxinyue完成签到,获得积分10
5秒前
5秒前
6秒前
科研通AI5应助斯文芷荷采纳,获得10
6秒前
7秒前
2鱼发布了新的文献求助10
8秒前
SYLH应助畅快的谷梦采纳,获得10
9秒前
mingjie发布了新的文献求助10
9秒前
Akim应助克里斯就是逊啦采纳,获得10
9秒前
越幸运完成签到 ,获得积分10
10秒前
young完成签到 ,获得积分10
10秒前
天天快乐应助成就的烧鹅采纳,获得10
11秒前
cora发布了新的文献求助10
11秒前
诚心的不斜完成签到,获得积分10
12秒前
bono完成签到 ,获得积分10
12秒前
12秒前
13秒前
又要起名字关注了科研通微信公众号
14秒前
可爱的函函应助su采纳,获得10
14秒前
15秒前
澳澳完成签到,获得积分10
16秒前
16秒前
善学以致用应助纯真抽屉采纳,获得10
17秒前
17秒前
笑笑发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
20秒前
Hello应助cora采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794