Analysis of monotonic greening and browning trends from global NDVI time-series

归一化差异植被指数 绿化 季节性 植被(病理学) 物候学 环境科学 时间序列 趋势分析 系列(地层学) 线性模型 生长季节 遥感 自然地理学 统计 气候学 气候变化 数学 地理 生态学 生物 医学 地质学 病理 古生物学
作者
Rogier de Jong,Sytze de Bruin,Allard de Wit,Michael E. Schaepman,David Dent
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:115 (2): 692-702 被引量:567
标识
DOI:10.1016/j.rse.2010.10.011
摘要

Remotely sensed vegetation indices are widely used to detect greening and browning trends; especially the global coverage of time-series normalized difference vegetation index (NDVI) data which are available from 1981. Seasonality and serial auto-correlation in the data have previously been dealt with by integrating the data to annual values; as an alternative to reducing the temporal resolution, we apply harmonic analyses and non-parametric trend tests to the GIMMS NDVI dataset (1981–2006). Using the complete dataset, greening and browning trends were analyzed using a linear model corrected for seasonality by subtracting the seasonal component, and a seasonal non-parametric model. In a third approach, phenological shift and variation in length of growing season were accounted for by analyzing the time-series using vegetation development stages rather than calendar days. Results differed substantially between the models, even though the input data were the same. Prominent regional greening trends identified by several other studies were confirmed but the models were inconsistent in areas with weak trends. The linear model using data corrected for seasonality showed similar trend slopes to those described in previous work using linear models on yearly mean values. The non-parametric models demonstrated the significant influence of variations in phenology; accounting for these variations should yield more robust trend analyses and better understanding of vegetation trends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助三木采纳,获得10
1秒前
CTT完成签到,获得积分10
1秒前
asd_1发布了新的文献求助10
1秒前
研友_LNBeyL发布了新的文献求助10
1秒前
刘家成发布了新的文献求助10
2秒前
瓜瓜完成签到,获得积分10
2秒前
03发布了新的文献求助10
2秒前
繁星完成签到,获得积分10
2秒前
8R60d8应助青年才俊采纳,获得10
2秒前
orixero应助冷酷严青采纳,获得10
2秒前
wanci应助MiYinZzz采纳,获得10
3秒前
钱璐璐关注了科研通微信公众号
3秒前
3秒前
3秒前
莫愁完成签到,获得积分10
4秒前
4秒前
zhangjing完成签到,获得积分10
4秒前
hashtag发布了新的文献求助10
5秒前
5秒前
5秒前
wanci应助畅快远山采纳,获得10
5秒前
5秒前
无敌完成签到 ,获得积分10
5秒前
休亮完成签到,获得积分10
6秒前
6秒前
大个应助丫丫采纳,获得10
6秒前
6秒前
6秒前
贺禾禾发布了新的文献求助10
7秒前
ZYC007完成签到,获得积分10
7秒前
叶小文发布了新的文献求助10
8秒前
英勇凝阳发布了新的文献求助10
8秒前
8秒前
8秒前
大狒狒发布了新的文献求助10
9秒前
Reef发布了新的文献求助10
9秒前
9秒前
9秒前
呆呆完成签到 ,获得积分10
9秒前
小熊发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472829
求助须知:如何正确求助?哪些是违规求助? 4575043
关于积分的说明 14350202
捐赠科研通 4502414
什么是DOI,文献DOI怎么找? 2467157
邀请新用户注册赠送积分活动 1455101
关于科研通互助平台的介绍 1429246