Analysis of monotonic greening and browning trends from global NDVI time-series

归一化差异植被指数 绿化 季节性 植被(病理学) 物候学 环境科学 时间序列 趋势分析 系列(地层学) 线性模型 生长季节 遥感 自然地理学 统计 气候学 气候变化 数学 地理 生态学 生物 医学 地质学 病理 古生物学
作者
Rogier de Jong,Sytze de Bruin,Allard de Wit,Michael E. Schaepman,David Dent
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:115 (2): 692-702 被引量:567
标识
DOI:10.1016/j.rse.2010.10.011
摘要

Remotely sensed vegetation indices are widely used to detect greening and browning trends; especially the global coverage of time-series normalized difference vegetation index (NDVI) data which are available from 1981. Seasonality and serial auto-correlation in the data have previously been dealt with by integrating the data to annual values; as an alternative to reducing the temporal resolution, we apply harmonic analyses and non-parametric trend tests to the GIMMS NDVI dataset (1981–2006). Using the complete dataset, greening and browning trends were analyzed using a linear model corrected for seasonality by subtracting the seasonal component, and a seasonal non-parametric model. In a third approach, phenological shift and variation in length of growing season were accounted for by analyzing the time-series using vegetation development stages rather than calendar days. Results differed substantially between the models, even though the input data were the same. Prominent regional greening trends identified by several other studies were confirmed but the models were inconsistent in areas with weak trends. The linear model using data corrected for seasonality showed similar trend slopes to those described in previous work using linear models on yearly mean values. The non-parametric models demonstrated the significant influence of variations in phenology; accounting for these variations should yield more robust trend analyses and better understanding of vegetation trends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moon发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
2秒前
思源应助11采纳,获得10
2秒前
davedavedave完成签到 ,获得积分10
3秒前
科研通AI6应助zz采纳,获得50
5秒前
早早发布了新的文献求助10
6秒前
镓氧锌钇铀给caihong的求助进行了留言
6秒前
6秒前
7秒前
pyQaQ完成签到,获得积分20
7秒前
清脆香露发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
10秒前
hujlina发布了新的文献求助10
10秒前
12秒前
13秒前
13秒前
13秒前
燊yy发布了新的文献求助10
14秒前
小糊涂仙儿完成签到 ,获得积分10
14秒前
FashionBoy应助任浩采纳,获得30
14秒前
orixero应助玩命的紫南采纳,获得10
14秒前
lx840518发布了新的文献求助10
14秒前
英俊的铭应助森森采纳,获得10
15秒前
111发布了新的文献求助20
15秒前
菠菜贸易中心关注了科研通微信公众号
15秒前
15秒前
15秒前
无奈初雪发布了新的文献求助10
16秒前
脑洞疼应助zhang采纳,获得30
16秒前
FashionBoy应助huangy采纳,获得10
17秒前
18秒前
冷傲忆枫完成签到,获得积分10
18秒前
18秒前
Akim应助清爽的迎天采纳,获得10
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5218493
求助须知:如何正确求助?哪些是违规求助? 4392450
关于积分的说明 13676083
捐赠科研通 4255081
什么是DOI,文献DOI怎么找? 2334721
邀请新用户注册赠送积分活动 1332386
关于科研通互助平台的介绍 1286491