亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Oligoglucoside elicitor-mediated activation of plant defense

激发子 生物 植保素 植物对草食的防御 互补DNA 生物化学 信号转导 细胞生物学 基因 白藜芦醇
作者
Jürgen Ebel
出处
期刊:BioEssays [Wiley]
卷期号:20 (7): 569-576 被引量:91
标识
DOI:10.1002/(sici)1521-1878(199807)20:7<569::aid-bies8>3.0.co;2-f
摘要

BioEssaysVolume 20, Issue 7 p. 569-576 Review Oligoglucoside elicitor-mediated activation of plant defense Jürgen Ebel, Corresponding Author Jürgen Ebel Botanisches Institut, Ludwig-Maximilians-Universität München, München, GermanyBotanisches Institut, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 München, GermanySearch for more papers by this author Jürgen Ebel, Corresponding Author Jürgen Ebel Botanisches Institut, Ludwig-Maximilians-Universität München, München, GermanyBotanisches Institut, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 München, GermanySearch for more papers by this author First published: 06 December 1998 https://doi.org/10.1002/(SICI)1521-1878(199807)20:7<569::AID-BIES8>3.0.CO;2-FCitations: 67AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Plants have acquired defense mechanisms to counteract potential pathogens. One such strategy involves inducible defense reactions that are activated by elicitors, signaling compounds of diverse nature. For one class of elicitors, oligoglucosides, recent developments in the characterization and isolation of an oligoclucan-binding protein, a putative elicitor receptor, and isolation of a cDNA that encodes the binding protein are discussed. Furthermore, the discovery of a role for calcium in the elicitation process is described. Finally, the identification of polymerase chain reaction products whose sequences indicate that they encode cytochrome P-450–dependent enzymes with possible roles in the formation of phytoalexins, antimicrobial plant defense compounds, is reported. These advances may lay the foundation for the first characterization of a receptor and subsequent signaling events in oligoglucan elicitor perception by higher plants. BioEssays 20:569–576, 1998. © 1998 John Wiley & Sons Inc. References 1 Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Physiol Plant Mol Biol 46: 189–214. 10.1146/annurev.pp.46.060195.001201 CASWeb of Science®Google Scholar 2 Bell AA (1981) Biochemical mechanisms of disease resistance. Annu Rev Plant Physiol 32: 21–81. 10.1146/annurev.pp.32.060181.000321 CASWeb of Science®Google Scholar 3 Dixon RA, Harrison MJ, Lamb CJ (1994) Early events in the activation of plant defense responses. Annu Rev Phytopathol 32: 479–501. 10.1146/annurev.py.32.090194.002403 CASWeb of Science®Google Scholar 4 Mendgen K, Hahn M, Deising H (1996) Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu Rev Phytopathol 34: 367–386. 10.1146/annurev.phyto.34.1.367 CASPubMedWeb of Science®Google Scholar 5 Ebel J, Cosio EG (1994) Elicitors of plant defense responses. Int Rev Cytol 148: 1–36. 10.1016/S0074-7696(08)62404-3 CASWeb of Science®Google Scholar 6 Long SR (1996) Rhizobium symbiosis: Nod factors in perspective. Plant Cell 8: 1885–1898. CASPubMedWeb of Science®Google Scholar 7 Pawlowski K, Bisseling T (1996) Rhizobial and actinorhizal symbiosis: What are the shared features? Plant Cell 8: 1899–1913. CASPubMedWeb of Science®Google Scholar 8 Ebel J, Scheel D (1997) Signals in host-parasite interactions. In G. C. Carroll, and P. Tudzynski (eds): The Mycota V Part A. Plant Relationships. Berlin Heidelberg: Springer-Verlag, pp. 85–105. Google Scholar 9 Yang Y, Gabriel DW (1995) Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Mol Plant Microbe Interact 8: 627–631. 10.1094/MPMI-8-0627 CASPubMedWeb of Science®Google Scholar 10 Van den Ackerveken G, Marois E Bonas U (1996) Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87: 1307–1316. 10.1016/S0092-8674(00)81825-5 CASPubMedWeb of Science®Google Scholar 11 Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB (1996) Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274: 2060–2063. 10.1126/science.274.5295.2060 CASPubMedWeb of Science®Google Scholar 12 Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ (1996) Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274: 2063–2065. 10.1126/science.274.5295.2063 CASPubMedWeb of Science®Google Scholar 13 Keen NT, Partridge JE, Zaki A (1972) Pathogen-produced elicitor of a chemical defense mechanism in soybean monogenically resistant to Phytophthora megasperma var. sojae. Phytopathology 62: 768. Web of Science®Google Scholar 14 Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors: A defense against microbial infection in plants. Annu Rev Plant Physiol 35: 243–275. CASWeb of Science®Google Scholar 15 Côté F, Hahn MG (1994) Oligosaccharins: Structures and signal transduction. Plant Mol Biol 26: 1379–1411. 10.1007/BF00016481 CASPubMedWeb of Science®Google Scholar 16 Ayers AR, Ebel J, Finelli F, Berger N, Albersheim P (1976) Host-pathogen interactions. IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures of Phytophthora megasperma var. sojae. Plant Physiol 57: 751–759. 10.1104/pp.57.5.751 CASPubMedWeb of Science®Google Scholar 17 Ayers AR, Ebel J, Valent B, Albersheim P (1976) Host-pathogen interactions: X. Fractionation and biological activity of an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae. Plant Physiol 57: 760–765. 10.1104/pp.57.5.760 CASPubMedWeb of Science®Google Scholar 18 Ayers AR, Valent B, Ebel J, Albersheim P (1976) Host-pathogen interactions: XI. Composition and structure of wall-released elicitor fractions. Plant Physiol 57: 766–774. 10.1104/pp.57.5.766 CASPubMedWeb of Science®Google Scholar 19 Ham K-S, Kauffmann S, Albersheim P, Darvill AG (1991) Host-pathogen interactions: XXXIX. A soybean pathogenesis-related protein with β-1,3-glucanase activity releases phytoalexin elicitor-active heat-stable fragments from fungal walls. Mol Plant Microbe Interact 4: 545–552. 10.1094/MPMI-4-545 CASWeb of Science®Google Scholar 20 Keen NT, Yoshikawa M (1983) β-1,3-Endoglucanase from soybean releases elicitor-active carbohydrates from fungal cell walls. Plant Physiol. 71: 460–465. 10.1104/pp.71.3.460 CASPubMedWeb of Science®Google Scholar 21 Okinaka Y, Mimori K, Takeo K, Kitamura S, Takeuchi Y, Yamaoka N, Yoshikawa M (1995) A structural model for the mechanisms of elicitor release from fungal cell walls by plant β-1,3-endoglucanase. Plant Physiol 109: 838–845. 10.1104/pp.109.3.839 Web of Science®Google Scholar 22 Waldmüller T, Cosio EG, Grisebach H, Ebel J (1992) Release of highly elicitor-active glucans by germinating zoospores of Phytophthora megasperma f. sp. glycinea. Planta 188: 498–505. 10.1007/BF00197041 CASPubMedWeb of Science®Google Scholar 23 Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22: 87–108. 10.1146/annurev.mi.22.100168.000511 CASPubMedWeb of Science®Google Scholar 24 Hahn MG, Albersheim P (1978) Host-pathogen "interactions" XIV. Isolation and partial characterization of an elicitor from yeast extract. Plant Physiol 62: 107–111. 10.1104/pp.62.1.107 CASPubMedWeb of Science®Google Scholar 25 Sharp JK, McNeil M, Albersheim P (1984) The primary structures of one elicitor-active and seven elicitor-inactive hexa(β-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea. J Biol Chem 259: 11321–11336. CASPubMedWeb of Science®Google Scholar 26 Sharp JK, Valent B, Albersheim P (1984) Purification and partial characterization of a β-glucan fragment that elicits phytoalexin accumulation in soybean. J Biol Chem 259: 11312–11320. CASPubMedWeb of Science®Google Scholar 27 Rolin D, Pfeffer PE, Osmann SF, Szwergold BS, Kappler F, Benesi AJ (1992) Structural studies of a phosphocholine substituted β-(1,3);(1,6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110. Biochim Biophys Acta 1116: 215–225. 10.1016/0304-4165(92)90014-L CASPubMedWeb of Science®Google Scholar 28 Brewin NJ, Perotto S, Kannenberg EL, Rae AL, Rathbun EA, Lucas MM, Kardailsky I, Gunder A, Bolanos L, Donovan N, Drobak BK (1993) Mechanisms of cell and tissue invasion by Rhizobium leguminosarum: The role of cell surface interactions. In E. W. Nester, D. Pal, and S. Verma (eds): Advances in Molecular Genetics of Plant-Microbe Interactions. Dordrecht: Kluwer, pp. 369–380. 10.1007/978-94-017-0651-3_40 Web of Science®Google Scholar 29 Long SR, Staskawicz BJ (1993) Procaryotic plant parasites. Cell 73: 921–935. 10.1016/0092-8674(93)90271-Q CASPubMedWeb of Science®Google Scholar 30 Miller KJ, Gore RS, Johnson R, Benesi AJ, Reinhold VN (1990) Cell-associated oligosaccharides of Bradyrhizobium spp. J Bacteriol 172: 136–142. 10.1128/jb.172.1.136-142.1990 CASPubMedWeb of Science®Google Scholar 31 Miller KJ, Hadley JA, Gustine DL (1994) Cyclic β-1,6-1,3-glucans of Bradyrhizobium japonicum USDA 110 elicit isoflavonoid production in the soybean (Glycine max) host. Plant Physiol 104: 917–923. 10.1104/pp.104.3.917 CASPubMedWeb of Science®Google Scholar 32 Mithöfer A, Bhagwat AA, Feger M, Ebel J (1996) Suppression of fungal β-glucan-induced plant defence in soybean (Glycine max L.) by cyclic 1,3-1,6-β-glucans from the symbiont Bradyrhizobium japonicum. Planta 199: 270–275. 10.1007/BF00196568 Web of Science®Google Scholar 33 Cosio EG, Frey T, Verduyn R, van Boom J, Ebel J (1990) High-affinity binding of a synthetic heptaglucoside and fungal glucan phytoalexin elicitors to soybean membranes. FFBS Lett 271: 223–226. 10.1016/0014-5793(90)80411-B CASPubMedWeb of Science®Google Scholar 34 Cheong J-J, Hahn MG (1991) A specific, high affinity binding site for the hepta-β-glucoside elicitor exists in soybean membranes. Plant Cell 3: 137–147. 10.1105/tpc.3.2.137 CASPubMedWeb of Science®Google Scholar 35 Cheong J-J, Alba R, Côté F, Enkerli J, Hahn MG (1993) Solubilization of functional plasma membrane-localized hepta-β-glucoside elicitor-binding proteins from soybean. Plant Physiol 103: 1173–1182. 10.1104/pp.103.4.1173 CASPubMedWeb of Science®Google Scholar 36 Cosio EG, Pöpperl H, Schmidt WE, Ebel J (1988) High-affinity binding of fungal β-glucan fragments to soybean (Glycine max L.) microsomal fractions and protoplasts. Eur J Biochem 175: 309–315. 10.1111/j.1432-1033.1988.tb14198.x CASPubMedWeb of Science®Google Scholar 37 Schmidt WE, Ebel J (1987) Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glycine max. Proc Natl Acad Sci USA 84: 4117–4121. 10.1073/pnas.84.12.4117 CASPubMedWeb of Science®Google Scholar 38 Yoshikawa M, Sugimoto K (1993) A specific binding site in soybean membranes for a phytoalexin elicitor released from fungal cell walls by β-1,3-endoglucanase. Plant Cell Physiol 34: 1229–1237. CASWeb of Science®Google Scholar 39 Cosio EG, Feger M, Miller CJ, Antelo L, Ebel J (1996) High-affinity binding of fungal β-glucan elicitors to cell membranes of species of the plant family Fabaceae. Planta 200: 92–99. 10.1007/BF00196654 CASWeb of Science®Google Scholar 40 Hahn MG (1996) Microbial elicitors and their receptors in plants. Annu Rev Phytopathol 34: 387–412. 10.1146/annurev.phyto.34.1.387 CASPubMedWeb of Science®Google Scholar 41 Bhagwat AA, Mithöfer A, Pfeffer PE, Kraus C, Spikers N, Hotchkiss A, Ebel J, Keister DL (1997) ndv Mutant of Bradyrhizobium japonicum synthesizes a cyclic β-(1[00ae]3)-glucan (cyclodecalaminarinose) which does not suppress host defense during symbiosis. Submitted for publication. Google Scholar 42 Hammond-Kosack KE, Jones JDG (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48: 575–607. 10.1146/annurev.arplant.48.1.575 CASPubMedWeb of Science®Google Scholar 43 Kooman-Gersmann M, Honée G, Bonnema G, De Wit PJGM (1996) A high-affinity binding site for the AVR9 peptide elicitor of Cladosporium fulvum is present on plasma membranes of tomato and other solanaceous plants. Plant Cell 8: 929–938. 10.1105/tpc.8.5.929 CASPubMedWeb of Science®Google Scholar 44 De Wit PJGM (1992) Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu Rev Phytopathol 30: 391–418. 10.1146/annurev.py.30.090192.002135 CASPubMedWeb of Science®Google Scholar 45 Van den Ackerveken GFJM, Van Kan JAL, De Wit PJGM (1992) Molecular analysis of the avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum fully supports the gene-for-gene hypothesis. Plant J 2: 359–366. 10.1046/j.1365-313X.1992.t01-34-00999.x CASPubMedWeb of Science®Google Scholar 46 Shibuya N, Kaku K, Kuchitsu K, Maliarik MJ (1993) Identification of a novel high-affinity binding site for N-acetylchitooligosaccharide elicitor in the membrane fraction from suspension-cultured rice cells. FEBS Lett 329: 75–78. 10.1016/0014-5793(93)80197-3 CASPubMedWeb of Science®Google Scholar 47 Shibuya N, Ito Y, Kaku H (1996) Perception of oligochitin (N-acetylchitooligo-saccharide) elicitor signal in rice. In G. Stacy, B. Mullin, and P. M. Gresshoff (eds): Biology of Plant-Microbe Interactions. St. Paul, MN: International Society Molecular Plant-Microbe Interactions, pp. 83–88. Web of Science®Google Scholar 48 Ito Y, Kaku H, Shibuya S (1997) Identification of a high-affinity binding protein for N-acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling. Plant J 12: 347–356. 10.1046/j.1365-313X.1997.12020347.x CASPubMedWeb of Science®Google Scholar 49 Baureithel K, Felix G, Boller T (1994) Specific, high affinity binding of chitin fragments to tomato cells and membranes. J Biol Chem 269: 17931–17938. CASPubMedWeb of Science®Google Scholar 50 Basse CW, Fath A, Boller T (1993) High affinity binding of a glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific glycan suppressors. J Biol Chem 268: 14724–14731. CASPubMedWeb of Science®Google Scholar 51 Wendehenne D, Binet M-N, Blein J-P, Ricci P, Pugin A (1995) Evidence for specific, high-affinity binding sites for a proteinaceous elicitor in tobacco plasma membrane. FEBS Lett 374: 203–207. 10.1016/0014-5793(95)01108-Q CASPubMedWeb of Science®Google Scholar 52 Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78: 449–460. 10.1016/0092-8674(94)90423-5 PubMedWeb of Science®Google Scholar 53 Cheong J-J, Birberg W, Fügedi P, Pilotti Å, Garegg PJ, Hong N, Ogawa T, Hahn MG (1991) Structure-activity relationships of oligo-β-glucoside elicitors of phytoalexin accumulation in soybean. Plant Cell 3: 127–136. 10.1105/tpc.3.2.127 CASPubMedWeb of Science®Google Scholar 54 Cosio EG, Frey T, Ebel J (1992) Identification of a high-affinity binding protein for a hepta-β-glucoside phytoalexin elicitor in soybean. Eur J Biochem 204: 1115–1123. 10.1111/j.1432-1033.1992.tb16736.x CASPubMedWeb of Science®Google Scholar 55 Frey T, Cosio EG, Ebel J (1993) Affinity purification and characterization of a binding protein for a hepta-β-glucoside phytoalexin elicitor in soybean. Phytochemistry 32: 543–550. 10.1016/S0031-9422(00)95134-3 CASWeb of Science®Google Scholar 56 Cosio EG, Frey T, Ebel J (1990) Solubilization of soybean membrane binding sites for fungal β-glucans that elicit phytoalexin accumulation. FEBS Lett 264: 235–238. 10.1016/0014-5793(90)80256-I CASPubMedWeb of Science®Google Scholar 57 Thomas TC, McNamee MG (1990) Purification of membrane proteins. Methods Enzymol 182: 499–520. 10.1016/0076-6879(90)82040-9 CASPubMedWeb of Science®Google Scholar 58 Mithöfer A, Lottspeich F, Ebel J (1996) One-step purification of the β-glucan elicitor-binding protein from soybean (Glycine max L.) and characterization of an anti-peptide antiserum. FEBS Lett 381: 203–207. 10.1016/0014-5793(96)00126-3 CASPubMedWeb of Science®Google Scholar 59 Umemoto N, Kakitani M, Iwamatsu A, Yoshikawa M, Yamaoka N, Ishida I (1997) The structure and function of a soybean β-glucan-elicitor-binding protein. Proc Natl Acad Sci USA 94: 1029–1034. 10.1073/pnas.94.3.1029 CASPubMedWeb of Science®Google Scholar 60 Bush DS (1993) Regulation of cytosolic calcium in plants. Plant Physiol 103: 7–13. 10.1104/pp.103.1.7 CASPubMedWeb of Science®Google Scholar 61 Webb AAR, McAinsh MR, Taylor JE, Hetherington AM (1996) Calcium ions as intracellular second messengers in higher plants. Adv Bot Res 22: 45–96. 10.1016/S0065-2296(08)60056-7 CASWeb of Science®Google Scholar 62 Enyedi AJ, Yalpani N, Silverman P, Raskin I (1992) Signal molecules in systemic plant resistance to pathogens and pests. Cell 70: 879–886. 10.1016/0092-8674(92)90239-9 CASPubMedWeb of Science®Google Scholar 63 Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4: 129–134. 10.2307/3869566 CASPubMedWeb of Science®Google Scholar 64 Durner J, Shah J, Klessig DF (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2: 266–274. 10.1016/S1360-1385(97)86349-2 Web of Science®Google Scholar 65 Drøbak BK (1993) Plant phosphoinositides and intracellular signaling. Plant Physiol 102: 705–709. 10.1104/pp.102.3.705 CASPubMedWeb of Science®Google Scholar 66 Yoshikawa M, Yamaoka N, Takeuchi Y (1993) Elicitors: Their significance and primary modes of action in the induction of plant defense reactions. Plant Cell Physiol 34: 1163–1173. CASWeb of Science®Google Scholar 67 Parker JE, Hahlbrock K, Scheel D (1988) Different cell-wall components from Phytophthora megasperma f. sp. glycinea elicit phytoalexin production in soybean and parsley. Planta 176: 75–82. 10.1007/BF00392482 CASPubMedWeb of Science®Google Scholar 68 Allen JB, Walberg MW, Edwards MC, Elledge SJ (1995) Finding prospective partners in the library: The two-hybrid system and phage display find a match. Trends Biochem Sci 20: 511–516. 10.1016/S0968-0004(00)89119-7 CASPubMedWeb of Science®Google Scholar 69 Fields S, Song OK (1989) A novel genetic system to detect protein-protein interactions. Nature 340: 245–246. 10.1038/340245a0 CASPubMedWeb of Science®Google Scholar 70 Bach M, Schnitzler J-P, Seitz HU (1993) Elicitor-induced changes in Ca2+ influx, K+ efflux, and 4-hydroxybenzoic acid synthesis in protoplasts of Daucus carota L. Plant Physiol 103: 407–412. 10.1104/pp.103.2.407 CASPubMedWeb of Science®Google Scholar 71 Ebel J, Bhagwat AA, Cosio EG, Feger M, Kissel U, Mithöfer A, Waldmüller T (1995) Elicitor-binding proteins and signal transduction in the activation of a phytoalexin defence response. Can J Bot 73: S506–S510. 10.1139/b95-289 CASWeb of Science®Google Scholar 72 Mathieu Y, Kurkdjian A, Xia H, Guern J, Koller A, Spiro MD, O'Neill M, Albersheim P, Darvill A (1991) Membrane responses induced by oligogalacturonides in suspension cultured tobacco cells. Plant J 1: 333–343. 10.1046/j.1365-313X.1991.t01-10-00999.x PubMedWeb of Science®Google Scholar 73 Scheel D, Colling C, Hedrich R, Kawalleck P, Parker E, Sacks WR, Somssich IE, Hahlbrock K (1991) Signals in plant defense gene activation. In H. Hennecke, D. Pal and S. Verma (eds): Advances in Molecular Genetics of Plant-Microbe Interactions. Dordrecht: Kluwer, pp. 373–380. 10.1007/978-94-015-7934-6_58 Web of Science®Google Scholar 74 Tavernier E, Wendehenne D, Blein J-P, Pugin A (1995) Involvement of free calcium in action of cryptogein, a proteinaceous elicitor of hypersensitive reaction in tobacco cells. Plant Physiol 109: 1025–1031. 10.1104/pp.109.3.1025 CASPubMedWeb of Science®Google Scholar 75 Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352: 524–526. 10.1038/352524a0 CASPubMedWeb of Science®Google Scholar 76 Shimomura O, Musicki B, Kishi Y (1989) Semi-synthetic aequorins with improved sensitivity to Ca2+ ions. Biochem J 261: 913–920. 10.1042/bj2610913 CASPubMedWeb of Science®Google Scholar 77 Mithöfer A, Ebel J, Bhagwat AA, Boller T, Neuhaus-Url G (1998) Transgenic aequorin monitors cytosolic calcium transients in soybean cells challenged with β-glucan or chitin elicitors. Submitted for publication. Google Scholar 78 Suzuki K, Shinshi H (1995) Transient activation and tyrosine phosphorylation of a protein kinase in tobacco cells treated with fungal elicitor. Plant Cell 7: 639–647. 10.1105/tpc.7.5.639 CASPubMedWeb of Science®Google Scholar 79 Ligterink W, Kroj T, zur Niedon U, Hirt H, Scheel D (1997) Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science 276: 2054–2057. 10.1126/science.276.5321.2054 CASPubMedWeb of Science®Google Scholar 80 Ebel J, Grisebach H (1988) Defense strategies of soybean against the fungus Phytophthora megasperma f. sp. glycinea: A molecular analysis. Trends Biochem Sci 13: 23–27. 10.1016/0968-0004(88)90014-X CASPubMedWeb of Science®Google Scholar 81 Hahn MG, Bonhoff A, Grisebach H (1985) Quantitative localization of the phytoalexin glyceollin I in relation to fungal hyphae in soybean roots infected with Phytophthora megasperma f. sp. glycinea. Plant Physiol 77: 591–601. 10.1104/pp.77.3.591 CASPubMedWeb of Science®Google Scholar 82 Kraus C, Spiteller G, Mithöfer A, Ebel J (1995) Quantification of glyceollins in non-elicited seedlings of Glycine max by gas chromatography-mass spectrometry. Phytochemistry 40: 739–743 10.1016/0031-9422(95)00404-U CASWeb of Science®Google Scholar 83 Möllers B (1997) Charakterisierung differentiell exprimierter Gene der 4-Cumarat:CoA Ligase in Zellkulturen der Sojabohne (Glycine max L.) Doctoral Thesis, Universität München. Google Scholar 84 Uhlmann A, Ebel J (1993) Molecular cloning and expression of 4-coumarate:CoA ligase, an enzyme involved in the resistance response of soybean (Glycine max L.) against pathogen attack. Plant Physiol 102: 1147–1156. 10.1104/pp.102.4.1147 CASPubMedWeb of Science®Google Scholar 85 Schopfer CR, Ebel J (1998) Identification of elicitor-induced cytochrome P450s of soybean (Glycine max L.) using differential display of mRNA. Mol Gen Genet. In press. Google Scholar Citing Literature Volume20, Issue7July 1998Pages 569-576 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助科研通管家采纳,获得10
36秒前
一个小胖子完成签到,获得积分10
44秒前
yuehan完成签到 ,获得积分10
59秒前
小二郎应助叶香菱采纳,获得10
1分钟前
1分钟前
Just_nine发布了新的文献求助10
2分钟前
lili应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
4分钟前
叶香菱发布了新的文献求助10
4分钟前
小蘑菇应助木四点采纳,获得10
5分钟前
5分钟前
木四点发布了新的文献求助10
5分钟前
刘刘完成签到 ,获得积分10
6分钟前
领导范儿应助沉默的不斜采纳,获得10
8分钟前
lili应助科研通管家采纳,获得10
10分钟前
猪小猪完成签到,获得积分10
10分钟前
Magic发布了新的文献求助50
11分钟前
xiaowang完成签到 ,获得积分10
11分钟前
小布完成签到 ,获得积分10
12分钟前
酷波er应助科研通管家采纳,获得10
12分钟前
情怀应助LEE采纳,获得10
12分钟前
yaoyaoyao完成签到 ,获得积分10
12分钟前
Magic发布了新的文献求助20
12分钟前
大琳啊完成签到,获得积分10
12分钟前
13分钟前
LEE发布了新的文献求助10
13分钟前
Much完成签到 ,获得积分10
13分钟前
zz完成签到,获得积分10
13分钟前
Magic发布了新的文献求助50
14分钟前
agent99完成签到,获得积分10
14分钟前
英俊的铭应助文艺猫咪采纳,获得10
14分钟前
agent99驳回了852应助
14分钟前
碘伏完成签到 ,获得积分10
14分钟前
15分钟前
Dandraine发布了新的文献求助10
15分钟前
共享精神应助Dandraine采纳,获得10
15分钟前
菠萝完成签到 ,获得积分10
15分钟前
科目三应助研友_n0gOKL采纳,获得10
15分钟前
15分钟前
高分求助中
Exploring Mitochondrial Autophagy Dysregulation in Osteosarcoma: Its Implications for Prognosis and Targeted Therapy 2000
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
QMS18Ed2 | process management. 2nd ed 600
LNG as a marine fuel—Safety and Operational Guidelines - Bunkering 560
晶体非线性光学:带有 SNLO 示例(第二版) 500
Fatigue, environmental factors, and new materials : presented at the 1998 ASME/JSME Joint Pressure Vessels and Piping Conference : San Diego, California, July 26-30, 1998 500
Clinical Interviewing, 7th ed 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2945723
求助须知:如何正确求助?哪些是违规求助? 2605855
关于积分的说明 7017407
捐赠科研通 2246293
什么是DOI,文献DOI怎么找? 1191980
版权声明 590426
科研通“疑难数据库(出版商)”最低求助积分说明 583312