A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex

微电极 聚酰亚胺 材料科学 生物医学工程 有限元法 脑组织 脑植入物 分层(地质) 刚度 粘附 多电极阵列 植入 复合材料 生物物理学 拉伤 纳米技术 光电子学 化学 图层(电子) 电极 解剖 结构工程 外科 古生物学 医学 物理化学 俯冲 工程类 生物 构造学
作者
Jeyakumar Subbaroyan,David C. Martin,Daryl R. Kipke
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:2 (4): 103-113 被引量:332
标识
DOI:10.1088/1741-2560/2/4/006
摘要

The viability of chronic neural microelectrodes for electrophysiological recording and stimulation depends on several factors, including the encapsulation of the implant by a reactive tissue response. We postulate that mechanical strains induced around the implant site may be one of the leading factors responsible for the sustained tissue response in chronic implants. The objectives of this study were to develop a finite-element model of the probe–brain tissue interface and analyze the effects of tethering forces, probe–tissue adhesion and stiffness of the probe substrate on the interfacial strains induced around the implant site. A 3D finite-element model of the probe–brain tissue microenvironment was developed and used to simulate interfacial strains created by 'micromotion' of chronically implanted microelectrodes. Three candidate substrates were considered: (a) silicon, (b) polyimide and (c) a hypothetical 'soft' material. Simulated tethering forces resulted in elevated strains both at the tip and at the sharp edges of the probe track in the tissue. The strain fields induced by a simulated silicon probe were similar to those induced by a simulated polyimide probe, albeit at higher absolute values for radial tethering forces. Simulations of poor probe–tissue adhesion resulted in elevated strains at the tip and delamination of the tissue from the probe. A tangential tethering force results in 94% reduction in the strain value at the tip of the polyimide probe track in the tissue, whereas the simulated 'soft' probe induced two orders of magnitude smaller values of strain compared to a simulated silicon probe. The model results indicate that softer substrates reduce the strain at the probe–tissue interface and thus may also reduce tissue response in chronic implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HH完成签到,获得积分10
1秒前
科研通AI2S应助飞羽采纳,获得10
1秒前
风中寄云完成签到,获得积分20
1秒前
故意的傲玉应助毛慢慢采纳,获得10
1秒前
1秒前
小白发布了新的文献求助10
1秒前
2秒前
2秒前
马尼拉发布了新的文献求助10
3秒前
CodeCraft应助dildil采纳,获得10
3秒前
3秒前
cyanpomelo完成签到 ,获得积分10
4秒前
4秒前
微笑高山完成签到 ,获得积分10
4秒前
文献查找发布了新的文献求助10
4秒前
加油完成签到,获得积分20
5秒前
Sunrise发布了新的文献求助10
5秒前
tabor发布了新的文献求助10
5秒前
唐妮完成签到,获得积分10
5秒前
啵清啵完成签到,获得积分10
6秒前
6秒前
莉莉发布了新的文献求助10
6秒前
7秒前
NexusExplorer应助平常的雁凡采纳,获得10
7秒前
Silverexile完成签到,获得积分10
8秒前
8秒前
唠叨的曼易完成签到,获得积分10
8秒前
Ymj关闭了Ymj文献求助
9秒前
木木雨完成签到,获得积分10
9秒前
9秒前
Harlotte发布了新的文献求助20
9秒前
LINxu发布了新的文献求助10
9秒前
今后应助加油采纳,获得10
9秒前
moonlight发布了新的文献求助10
10秒前
IMkily完成签到,获得积分10
11秒前
深情安青应助sunzhiyu233采纳,获得10
11秒前
11秒前
11秒前
sss发布了新的文献求助20
12秒前
氨基酸发布了新的文献求助30
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759