A sequence-based two-level method for the prediction of type I secreted RTX proteins

序列(生物学) 计算生物学 化学 类型(生物学) 计算机科学 生物化学 生物 生态学
作者
Jiesi Luo,Wenling Li,Zhongyu Liu,Yanzhi Guo,Xuemei Pu,Menglong Li
出处
期刊:Analyst [The Royal Society of Chemistry]
卷期号:140 (9): 3048-3056 被引量:14
标识
DOI:10.1039/c5an00311c
摘要

Many Gram-negative bacteria use the type I secretion system (T1SS) to translocate a wide range of substrates (type I secreted RTX proteins, T1SRPs) from the cytoplasm across the inner and outer membrane in one step to the extracellular space. Since T1SRPs play an important role in pathogen-host interactions, identifying them is crucial for a full understanding of the pathogenic mechanism of T1SS. However, experimental identification is often time-consuming and expensive. In the post-genomic era, it becomes imperative to predict new T1SRPs using information from the amino acid sequence alone when new proteins are being identified in a high-throughput mode. In this study, we report a two-level method for the first attempt to identify T1SRPs using sequence-derived features and the random forest (RF) algorithm. At the full-length sequence level, the results show that the unique feature of T1SRPs is the presence of variable numbers of the calcium-binding RTX repeats. These RTX repeats have a strong predictive power and so T1SRPs can be well distinguished from non-T1SRPs. At another level, different from that of the secretion signal, we find that a sequence segment located at the last 20-30 C-terminal amino acids may contain important signal information for T1SRP secretion because obvious differences were shown between the corresponding positions of T1SRPs and non-T1SRPs in terms of amino acid and secondary structure compositions. Using five-fold cross-validation, overall accuracies of 97% at the full-length sequence level and 89% at the secretion signal level were achieved through feature evaluation and optimization. Benchmarking on an independent dataset, our method could correctly predict 63 and 66 of 74 T1SRPs at the full-length sequence and secretion signal levels, respectively. We believe that this study will be useful in elucidating the secretion mechanism of T1SS and facilitating hypothesis-driven experimental design and validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张演基发布了新的文献求助20
刚刚
刚刚
1秒前
可爱的函函应助LC采纳,获得10
1秒前
1秒前
AoiNG发布了新的文献求助10
1秒前
香蕉觅云应助srui采纳,获得10
1秒前
Hao发布了新的文献求助10
2秒前
2秒前
宁祚完成签到,获得积分10
3秒前
yibo完成签到,获得积分10
3秒前
YY完成签到,获得积分10
5秒前
明轩发布了新的文献求助10
5秒前
sylxiaozhi发布了新的文献求助10
6秒前
buno应助weiziho采纳,获得10
6秒前
6秒前
Cozy发布了新的文献求助10
6秒前
龙行天下发布了新的文献求助10
7秒前
徐家小乐完成签到,获得积分10
7秒前
neon完成签到,获得积分10
7秒前
8秒前
YY发布了新的文献求助10
8秒前
周周南完成签到 ,获得积分10
9秒前
完美世界应助Hao采纳,获得10
10秒前
有人应助LC采纳,获得10
11秒前
12秒前
12秒前
zcy完成签到 ,获得积分10
14秒前
14秒前
南风9723完成签到,获得积分10
14秒前
SCQ应助豆豆采纳,获得10
14秒前
xxxxy发布了新的文献求助10
17秒前
我是老大应助姜姜采纳,获得10
18秒前
19秒前
1Yer6发布了新的文献求助30
19秒前
LINDA发布了新的文献求助10
19秒前
20秒前
英姑应助幸福大白采纳,获得10
20秒前
田様应助文静三颜采纳,获得10
21秒前
Owen应助油2采纳,获得10
21秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330040
求助须知:如何正确求助?哪些是违规求助? 2959654
关于积分的说明 8596227
捐赠科研通 2638022
什么是DOI,文献DOI怎么找? 1444115
科研通“疑难数据库(出版商)”最低求助积分说明 668935
邀请新用户注册赠送积分活动 656517