A sequence-based two-level method for the prediction of type I secreted RTX proteins

序列(生物学) 计算生物学 化学 类型(生物学) 计算机科学 生物化学 生物 生态学
作者
Jiesi Luo,Wenling Li,Zhongyu Liu,Yanzhi Guo,Xuemei Pu,Menglong Li
出处
期刊:Analyst [The Royal Society of Chemistry]
卷期号:140 (9): 3048-3056 被引量:14
标识
DOI:10.1039/c5an00311c
摘要

Many Gram-negative bacteria use the type I secretion system (T1SS) to translocate a wide range of substrates (type I secreted RTX proteins, T1SRPs) from the cytoplasm across the inner and outer membrane in one step to the extracellular space. Since T1SRPs play an important role in pathogen-host interactions, identifying them is crucial for a full understanding of the pathogenic mechanism of T1SS. However, experimental identification is often time-consuming and expensive. In the post-genomic era, it becomes imperative to predict new T1SRPs using information from the amino acid sequence alone when new proteins are being identified in a high-throughput mode. In this study, we report a two-level method for the first attempt to identify T1SRPs using sequence-derived features and the random forest (RF) algorithm. At the full-length sequence level, the results show that the unique feature of T1SRPs is the presence of variable numbers of the calcium-binding RTX repeats. These RTX repeats have a strong predictive power and so T1SRPs can be well distinguished from non-T1SRPs. At another level, different from that of the secretion signal, we find that a sequence segment located at the last 20-30 C-terminal amino acids may contain important signal information for T1SRP secretion because obvious differences were shown between the corresponding positions of T1SRPs and non-T1SRPs in terms of amino acid and secondary structure compositions. Using five-fold cross-validation, overall accuracies of 97% at the full-length sequence level and 89% at the secretion signal level were achieved through feature evaluation and optimization. Benchmarking on an independent dataset, our method could correctly predict 63 and 66 of 74 T1SRPs at the full-length sequence and secretion signal levels, respectively. We believe that this study will be useful in elucidating the secretion mechanism of T1SS and facilitating hypothesis-driven experimental design and validation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raymond完成签到,获得积分10
刚刚
YCH完成签到,获得积分10
2秒前
3秒前
子彧发布了新的文献求助10
3秒前
Jasper应助wuxunxun2015采纳,获得10
4秒前
5秒前
鸠摩智完成签到,获得积分10
7秒前
乐乐应助cj采纳,获得10
8秒前
REX完成签到,获得积分10
9秒前
9秒前
娜娜发布了新的文献求助10
12秒前
12秒前
cyskdsn完成签到 ,获得积分10
12秒前
14秒前
14秒前
hhuajw应助撒旦asd采纳,获得10
17秒前
17秒前
bai发布了新的文献求助10
17秒前
腼腆的海豚完成签到,获得积分10
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
旦旦旦旦旦旦完成签到,获得积分10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
mengtingmei应助科研通管家采纳,获得10
19秒前
852应助LL采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
mengtingmei应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
19秒前
Ava应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
微糖应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071