A sequence-based two-level method for the prediction of type I secreted RTX proteins

序列(生物学) 计算生物学 化学 类型(生物学) 计算机科学 生物化学 生物 生态学
作者
Jiesi Luo,Wenling Li,Zhongyu Liu,Yanzhi Guo,Xuemei Pu,Menglong Li
出处
期刊:Analyst [Royal Society of Chemistry]
卷期号:140 (9): 3048-3056 被引量:14
标识
DOI:10.1039/c5an00311c
摘要

Many Gram-negative bacteria use the type I secretion system (T1SS) to translocate a wide range of substrates (type I secreted RTX proteins, T1SRPs) from the cytoplasm across the inner and outer membrane in one step to the extracellular space. Since T1SRPs play an important role in pathogen-host interactions, identifying them is crucial for a full understanding of the pathogenic mechanism of T1SS. However, experimental identification is often time-consuming and expensive. In the post-genomic era, it becomes imperative to predict new T1SRPs using information from the amino acid sequence alone when new proteins are being identified in a high-throughput mode. In this study, we report a two-level method for the first attempt to identify T1SRPs using sequence-derived features and the random forest (RF) algorithm. At the full-length sequence level, the results show that the unique feature of T1SRPs is the presence of variable numbers of the calcium-binding RTX repeats. These RTX repeats have a strong predictive power and so T1SRPs can be well distinguished from non-T1SRPs. At another level, different from that of the secretion signal, we find that a sequence segment located at the last 20-30 C-terminal amino acids may contain important signal information for T1SRP secretion because obvious differences were shown between the corresponding positions of T1SRPs and non-T1SRPs in terms of amino acid and secondary structure compositions. Using five-fold cross-validation, overall accuracies of 97% at the full-length sequence level and 89% at the secretion signal level were achieved through feature evaluation and optimization. Benchmarking on an independent dataset, our method could correctly predict 63 and 66 of 74 T1SRPs at the full-length sequence and secretion signal levels, respectively. We believe that this study will be useful in elucidating the secretion mechanism of T1SS and facilitating hypothesis-driven experimental design and validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晁子枫发布了新的文献求助10
刚刚
2秒前
乐观小之应助科研通管家采纳,获得10
2秒前
乐观小之应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得30
2秒前
伏波完成签到,获得积分0
2秒前
Dada应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
乐观小之应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
Dada应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
乐观小之应助科研通管家采纳,获得10
2秒前
3秒前
Akim应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
乐观小之应助科研通管家采纳,获得10
3秒前
3秒前
Dada应助科研通管家采纳,获得10
3秒前
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
3秒前
April完成签到,获得积分10
3秒前
研友_ngkyGn完成签到,获得积分10
4秒前
CodeCraft应助不安忆寒采纳,获得10
5秒前
无花果应助搞怪的易槐采纳,获得10
5秒前
6秒前
研友_VZG7GZ应助小风波采纳,获得10
6秒前
6秒前
Winnie完成签到 ,获得积分10
7秒前
7秒前
皮质醇发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500590
关于积分的说明 11100070
捐赠科研通 3231090
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719