A New Strategy to Destroy Antibiotic Resistant Microorganisms: Antimicrobial Photodynamic Treatment

光敏剂 抗菌剂 光动力疗法 抗生素 化学 微生物 光化学 细菌 抗生素耐药性 纳米技术 材料科学 生物 生物化学 有机化学 遗传学
作者
Tim Maisch
出处
期刊:Mini-reviews in Medicinal Chemistry [Bentham Science]
卷期号:9 (8): 974-983 被引量:247
标识
DOI:10.2174/138955709788681582
摘要

Photodynamic activity of chemical compounds towards microorganisms was first published at the turn of 20th century and it is based on the concept that a chemical compound, known as the photosensitizer, is localized preferentially in the microorganism and subsequently activated by low doses of visible light of an appropriate wavelength to generate reactive oxygen species that are toxic to the target microorganisms. Processes, in which absorption of light by a photosensitizer induces chemical changes in another molecule, are defined as photosensitizing reactions. Since the middle of the last century, antibacterial photosensitizing reactions were forgotten because of the discovery and the beginning of the Golden Age of antibiotics. Certainly, in the last decades the worldwide rise in antibiotic resistance has driven research to the development of new anti-microbial strategies. Different classes of molecules including phenothiazine, porphyrines, phthalocyanines, and fullerenes have demonstrated antimicrobial efficacy against a broad spectrum of antibiotic resistant microorganisms upon illumination. Due to their extended pi-conjugated system these molecules absorb visible light, have a high triplet quantum yield and can generate reactive oxygen species upon illumination. This mini-review will focus on some major advances regarding physical and chemical properties of photosensitizers and light sources that appear to be suitable in the field of antimicrobial photodynamic therapy. Currently, topical application of a photosensitizer on infected tissues and subsequent illumination seems to be the most promising feature of antimicrobial photodynamic therapy, thereby not harming the surrounding tissue or disturbing the residual bacteria-flora of the tissue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FGG完成签到,获得积分10
刚刚
方方完成签到,获得积分10
刚刚
南歌子完成签到,获得积分10
刚刚
尚好佳完成签到,获得积分10
刚刚
完美世界应助朴实香露采纳,获得10
刚刚
june1111发布了新的文献求助10
刚刚
1秒前
LeungYM发布了新的文献求助30
2秒前
3秒前
madclown发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
小何发布了新的文献求助10
4秒前
5秒前
5秒前
小蘑菇应助future采纳,获得10
5秒前
song99完成签到,获得积分10
5秒前
SB发布了新的文献求助10
5秒前
6秒前
caifeng完成签到,获得积分20
6秒前
6秒前
zyp完成签到,获得积分10
6秒前
无花果应助合适板栗采纳,获得10
6秒前
丘比特应助火龙果采纳,获得30
7秒前
f111发布了新的文献求助10
8秒前
绾绾完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
Murphy_H发布了新的文献求助30
10秒前
duanduan发布了新的文献求助10
11秒前
芝士猞猁发布了新的文献求助10
11秒前
11秒前
Hou发布了新的文献求助10
12秒前
12秒前
长期素食发布了新的文献求助50
12秒前
357完成签到 ,获得积分10
13秒前
余琳发布了新的文献求助30
14秒前
科研小贩完成签到,获得积分10
15秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470844
求助须知:如何正确求助?哪些是违规求助? 3063847
关于积分的说明 9085670
捐赠科研通 2754320
什么是DOI,文献DOI怎么找? 1511386
邀请新用户注册赠送积分活动 698380
科研通“疑难数据库(出版商)”最低求助积分说明 698253