亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Carbon Nanotubes Provide a Charge

碳纳米管 纳米技术 电荷(物理) 材料科学 化学 物理 量子力学
作者
Adam E. Cohen
出处
期刊:Science [American Association for the Advancement of Science (AAAS)]
卷期号:300 (5623): 1235-1236 被引量:72
标识
DOI:10.1126/science.300.5623.1235
摘要

A recent Report by S. Ghosh and co-workers (“Carbon nanotube flow sensors,” 14 Feb., p. [1042][1]) describes how flowing liquid over a mat of carbon nanotubes induces a voltage parallel to the flow. The authors explain their result in terms of “a direct forcing of the free charge carriers in the nanotubes by the fluctuating Coulombic field of the liquid flowing past the nanotubes.” I suggest a more prosaic explanation: It is well known that most porous materials develop a “streaming potential” in response to a liquid flow because the flow carries along counterions that accumulate in a thin layer near the solid-liquid interface (the Debye layer). Quincke first observed this effect in 1859 in powdered glass, ivory chips, animal bladder, graphite, and iron filings, among other materials ([1][2], [2][3]), and Helmholtz provided a quantitative explanation in 1879 ([3][4]). There is no reason for carbon nanotubes to be immune to it. The purification treatment reported by Ghosh et al. of long exposure to concentrated HCl would leave the surface of the nanotubes negatively charged, so one would expect an excess of positive charges in the Debye layer. This is consistent with the observed sign of the voltage in their experiments. More viscous solutions produce a lower voltage because the flow penetrates a lesser distance into the interior of the mat. The saturation in the observed voltage can be explained by electrode polarization. The fact that graphite did not produce a voltage in their control experiment is not surprising, given that (i) it has vastly smaller surface area and (ii) unlike the nanotubes, it presumably was not treated with acid before the measurement. The results of Ghosh and co-workers are interesting and may lead to useful devices, but the data presented seem consistent with classical electrokinetics. 1. 1.[↵][5] 1. G. Quincke , Ann. Physik 107(2), 1 (1859). [OpenUrl][6] 2. 2.[↵][7] 1. G. Quincke , Ann. Physik 110(2), 38 (1860). [OpenUrl][8] 3. 3.[↵][9] 1. H. L. F. von Helmholtz , Ann. Physik 7(3), 337 (1879) (no.), translated by P. Bocquet, Two Monographs on Electrokinetics (Engineering Research Institute, University of Michigan, Ann Arbor, MI, 1951). [OpenUrl][10] # Response {#article-title-2} Cohen suggests an electrokinetic mechanism for our observation of voltages induced by fluid flow over a mat of single-walled carbon nanotubes (SWNTs). In this purely ionic mechanism, the voltage appears as a streaming potential involving the ions carried by fluid flow in the diffuse Debye layer at the interface, while the mobile charge carriers (electrons and holes) in the solid play no role. Although an electrokinetic mechanism should suffice for the case of a nonconducting solid/liquid interface (e.g., with powdered glass, ivory chips, and so forth as the solid), we believe that it cannot effectively explain the present case of conducting nanotubes (resistivity ∼ 0.02 ohm-m). Assuming, as suggested by Cohen, that the SWNTs are negatively charged at the interface (so as to be consistent with the direction of the observed voltage), the streaming potential at the low flow velocities ( u ) obtained in our experiments (several orders of magnitude smaller than the thermal velocities) is expected to be linear in u , which is in strong disagreement with the observed sublinear dependence. As stated in our Report, the flow-induced voltages at these flow velocities are about 10 times smaller for multiwalled carbon nanotubes. These results again contradict the electrokinetic mechanism as a possible explanation. For a conducting solid/liquid interface (SWNTs in the present case), the charge on the solid surface is also screened by the carriers in the conducting solid. The usual treatment of the electrokinetic mechanism for the insulating solid/liquid interface is then not quite applicable per se. Figure 2 of our Report clearly shows that the induced voltage increases with increasing ionic concentration, in sharp contrast to a electrokinetic mechanism. We believe that the classical, purely electrokinetic mechanism, although very apt in the case of an insulating solid/liquid interface, is not effective in the case of the conducting solid/liquid interface in our study. Our mechanism involves the forcing of charge carriers (electrons and holes) in the SWNT itself by the ionic flow over the interface. [1]: /lookup/doi/10.1126/science.1079080 [2]: #ref-1 [3]: #ref-2 [4]: #ref-3 [5]: #xref-ref-1-1 View reference 1. in text [6]: {openurl}?query=rft.jtitle%253DAnn.%2BPhysik%26rft.volume%253D107%26rft.issue%253D2%26rft.spage%253D1%26rft.atitle%253DANN%2BPHYSIK%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [7]: #xref-ref-2-1 View reference 2. in text [8]: {openurl}?query=rft.jtitle%253DAnn.%2BPhysik%26rft.volume%253D110%26rft.issue%253D2%26rft.spage%253D38%26rft.atitle%253DANN%2BPHYSIK%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [9]: #xref-ref-3-1 View reference 3. in text [10]: {openurl}?query=rft.jtitle%253DAnn.%2BPhysik%26rft.volume%253D7%26rft.issue%253D3%26rft.spage%253D337%26rft.atitle%253DANN%2BPHYSIK%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信号厂完成签到 ,获得积分10
5秒前
可爱的函函应助甜甜的契采纳,获得10
11秒前
晚意完成签到 ,获得积分10
12秒前
隐形曼青应助lda采纳,获得10
16秒前
21秒前
jimmy_bytheway完成签到,获得积分0
22秒前
22秒前
SciGPT应助科研通管家采纳,获得10
24秒前
杳鸢应助科研通管家采纳,获得20
24秒前
ding应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
杳鸢应助科研通管家采纳,获得100
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
深情安青应助泽霖采纳,获得10
26秒前
29秒前
勿昂完成签到 ,获得积分0
32秒前
拼搏的松鼠完成签到,获得积分10
32秒前
头孢克肟完成签到 ,获得积分10
34秒前
甜甜的契发布了新的文献求助10
36秒前
39秒前
46秒前
甜甜的契完成签到,获得积分10
46秒前
53秒前
56秒前
57秒前
泽霖发布了新的文献求助10
1分钟前
Starater关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
1分钟前
桐桐应助雪白的凡灵采纳,获得10
1分钟前
1分钟前
Mingjun完成签到 ,获得积分10
1分钟前
1分钟前
kokoko完成签到,获得积分10
1分钟前
七慕凉完成签到,获得积分10
1分钟前
1分钟前
迷你的靖雁完成签到,获得积分10
1分钟前
姜姜完成签到 ,获得积分10
1分钟前
林思完成签到,获得积分10
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261484
求助须知:如何正确求助?哪些是违规求助? 2902254
关于积分的说明 8319506
捐赠科研通 2572204
什么是DOI,文献DOI怎么找? 1397437
科研通“疑难数据库(出版商)”最低求助积分说明 653721
邀请新用户注册赠送积分活动 632223