已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Carbon Nanotubes Provide a Charge

碳纳米管 纳米技术 电荷(物理) 材料科学 化学 物理 量子力学
作者
Adam E. Cohen
出处
期刊:Science [American Association for the Advancement of Science (AAAS)]
卷期号:300 (5623): 1235-1236 被引量:74
标识
DOI:10.1126/science.300.5623.1235
摘要

A recent Report by S. Ghosh and co-workers (“Carbon nanotube flow sensors,” 14 Feb., p. [1042][1]) describes how flowing liquid over a mat of carbon nanotubes induces a voltage parallel to the flow. The authors explain their result in terms of “a direct forcing of the free charge carriers in the nanotubes by the fluctuating Coulombic field of the liquid flowing past the nanotubes.” I suggest a more prosaic explanation: It is well known that most porous materials develop a “streaming potential” in response to a liquid flow because the flow carries along counterions that accumulate in a thin layer near the solid-liquid interface (the Debye layer). Quincke first observed this effect in 1859 in powdered glass, ivory chips, animal bladder, graphite, and iron filings, among other materials ([1][2], [2][3]), and Helmholtz provided a quantitative explanation in 1879 ([3][4]). There is no reason for carbon nanotubes to be immune to it. The purification treatment reported by Ghosh et al. of long exposure to concentrated HCl would leave the surface of the nanotubes negatively charged, so one would expect an excess of positive charges in the Debye layer. This is consistent with the observed sign of the voltage in their experiments. More viscous solutions produce a lower voltage because the flow penetrates a lesser distance into the interior of the mat. The saturation in the observed voltage can be explained by electrode polarization. The fact that graphite did not produce a voltage in their control experiment is not surprising, given that (i) it has vastly smaller surface area and (ii) unlike the nanotubes, it presumably was not treated with acid before the measurement. The results of Ghosh and co-workers are interesting and may lead to useful devices, but the data presented seem consistent with classical electrokinetics. 1. 1.[↵][5] 1. G. Quincke , Ann. Physik 107(2), 1 (1859). [OpenUrl][6] 2. 2.[↵][7] 1. G. Quincke , Ann. Physik 110(2), 38 (1860). [OpenUrl][8] 3. 3.[↵][9] 1. H. L. F. von Helmholtz , Ann. Physik 7(3), 337 (1879) (no.), translated by P. Bocquet, Two Monographs on Electrokinetics (Engineering Research Institute, University of Michigan, Ann Arbor, MI, 1951). [OpenUrl][10] # Response {#article-title-2} Cohen suggests an electrokinetic mechanism for our observation of voltages induced by fluid flow over a mat of single-walled carbon nanotubes (SWNTs). In this purely ionic mechanism, the voltage appears as a streaming potential involving the ions carried by fluid flow in the diffuse Debye layer at the interface, while the mobile charge carriers (electrons and holes) in the solid play no role. Although an electrokinetic mechanism should suffice for the case of a nonconducting solid/liquid interface (e.g., with powdered glass, ivory chips, and so forth as the solid), we believe that it cannot effectively explain the present case of conducting nanotubes (resistivity ∼ 0.02 ohm-m). Assuming, as suggested by Cohen, that the SWNTs are negatively charged at the interface (so as to be consistent with the direction of the observed voltage), the streaming potential at the low flow velocities ( u ) obtained in our experiments (several orders of magnitude smaller than the thermal velocities) is expected to be linear in u , which is in strong disagreement with the observed sublinear dependence. As stated in our Report, the flow-induced voltages at these flow velocities are about 10 times smaller for multiwalled carbon nanotubes. These results again contradict the electrokinetic mechanism as a possible explanation. For a conducting solid/liquid interface (SWNTs in the present case), the charge on the solid surface is also screened by the carriers in the conducting solid. The usual treatment of the electrokinetic mechanism for the insulating solid/liquid interface is then not quite applicable per se. Figure 2 of our Report clearly shows that the induced voltage increases with increasing ionic concentration, in sharp contrast to a electrokinetic mechanism. We believe that the classical, purely electrokinetic mechanism, although very apt in the case of an insulating solid/liquid interface, is not effective in the case of the conducting solid/liquid interface in our study. Our mechanism involves the forcing of charge carriers (electrons and holes) in the SWNT itself by the ionic flow over the interface. [1]: /lookup/doi/10.1126/science.1079080 [2]: #ref-1 [3]: #ref-2 [4]: #ref-3 [5]: #xref-ref-1-1 View reference 1. in text [6]: {openurl}?query=rft.jtitle%253DAnn.%2BPhysik%26rft.volume%253D107%26rft.issue%253D2%26rft.spage%253D1%26rft.atitle%253DANN%2BPHYSIK%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [7]: #xref-ref-2-1 View reference 2. in text [8]: {openurl}?query=rft.jtitle%253DAnn.%2BPhysik%26rft.volume%253D110%26rft.issue%253D2%26rft.spage%253D38%26rft.atitle%253DANN%2BPHYSIK%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [9]: #xref-ref-3-1 View reference 3. in text [10]: {openurl}?query=rft.jtitle%253DAnn.%2BPhysik%26rft.volume%253D7%26rft.issue%253D3%26rft.spage%253D337%26rft.atitle%253DANN%2BPHYSIK%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好谷蓝完成签到,获得积分10
1秒前
树树完成签到,获得积分10
2秒前
木子完成签到 ,获得积分10
3秒前
多年以后完成签到 ,获得积分10
4秒前
老八完成签到,获得积分10
5秒前
吃西瓜皮完成签到,获得积分10
6秒前
7秒前
情怀应助明明采纳,获得10
8秒前
个性湘完成签到,获得积分10
8秒前
我是老大应助Aimee采纳,获得10
8秒前
orixero应助唠叨的宝马采纳,获得10
10秒前
zzz完成签到 ,获得积分10
13秒前
lx840518给lx840518的求助进行了留言
13秒前
14秒前
18秒前
英俊的铭应助哦哦哦采纳,获得10
18秒前
19秒前
jjdeng发布了新的文献求助10
21秒前
完美世界应助呼斯冷采纳,获得10
23秒前
典雅的涟妖完成签到,获得积分10
25秒前
hhh发布了新的文献求助10
27秒前
27秒前
27秒前
小curry完成签到,获得积分10
27秒前
FashionBoy应助caoyy采纳,获得10
29秒前
29秒前
小二郎应助wwwww采纳,获得10
30秒前
Spike完成签到 ,获得积分10
30秒前
醋灯笼完成签到,获得积分10
31秒前
里苏特发布了新的文献求助10
32秒前
哦哦哦发布了新的文献求助10
32秒前
科研顺利发布了新的文献求助10
32秒前
33秒前
科研通AI6.1应助TMAC采纳,获得30
33秒前
所所应助连国采纳,获得10
33秒前
科研通AI6.1应助大鱼采纳,获得10
34秒前
34秒前
34秒前
小明发布了新的文献求助10
34秒前
老八发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771799
求助须知:如何正确求助?哪些是违规求助? 5593934
关于积分的说明 15428394
捐赠科研通 4905053
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587067
关于科研通互助平台的介绍 1541958