瓦博格效应
丙酮酸激酶
糖酵解
巴基斯坦卢比
厌氧糖酵解
生物
癌变
癌症研究
丙酮酸脱氢酶激酶
细胞生物学
基因敲除
生物化学
激酶
化学
新陈代谢
丙酮酸脱氢酶复合物
酶
细胞凋亡
基因
作者
Heather R. Christofk,Matthew G. Vander Heiden,Marian H. Harris,Arvind Ramanathan,Robert E. Gerszten,Ru Wei,Mark D. Fleming,Stuart L. Schreiber,Lewis C. Cantley
出处
期刊:Nature
[Springer Nature]
日期:2008-03-01
卷期号:452 (7184): 230-233
被引量:2607
摘要
Many tumour cells have elevated rates of glucose uptake but reduced rates of oxidative phosphorylation. This persistence of high lactate production by tumours in the presence of oxygen, known as aerobic glycolysis, was first noted by Otto Warburg more than 75 yr ago. How tumour cells establish this altered metabolic phenotype and whether it is essential for tumorigenesis is as yet unknown. Here we show that a single switch in a splice isoform of the glycolytic enzyme pyruvate kinase is necessary for the shift in cellular metabolism to aerobic glycolysis and that this promotes tumorigenesis. Tumour cells have been shown to express exclusively the embryonic M2 isoform of pyruvate kinase. Here we use short hairpin RNA to knockdown pyruvate kinase M2 expression in human cancer cell lines and replace it with pyruvate kinase M1. Switching pyruvate kinase expression to the M1 (adult) isoform leads to reversal of the Warburg effect, as judged by reduced lactate production and increased oxygen consumption, and this correlates with a reduced ability to form tumours in nude mouse xenografts. These results demonstrate that M2 expression is necessary for aerobic glycolysis and that this metabolic phenotype provides a selective growth advantage for tumour cells in vivo.
科研通智能强力驱动
Strongly Powered by AbleSci AI