Multi-objective optimizing for image recovering in compressive sensing

计算机科学 压缩传感 像素 过程(计算) 人工智能 计算机视觉 图像(数学) 图像传感器 适应度函数 图像处理 遗传算法 机器学习 操作系统
作者
Sheng Bi,Ning Xi,King Wai Chiu Lai,Huaqing Min,Liangliang Chen
标识
DOI:10.1109/robio.2012.6491302
摘要

Recently, compressive sensing theory has opened up a new path for the development of signal processing. According to this theory, a novel single pixel camera system has been introduced to overcome the current limitation and challenges of manufacturing large scale photo sensor arrays. In the system, image can be recovered from original image using random measurements by means of compressive sensing techniques. In the image recovering process, some default parameters are used. It is important to find optimizing to enhance image accuracy and recovering speed. Some images recovering algorithms were attempted to recover images and some parameters of the algorithms need be set appropriately during the recovering process. In order to find the better values of the parameters, in this paper, a multi-objective optimizing method is proposed. Accuracy and rapidity are selected for optimization goal, and a multi-objective fitness function is built. Then some optimization parameters are selected and the ranges of the parameters are decided. And genetic algorithm is used in the optimization process. Finally, the result of optimization is used in a single pixel camera system. And the results of recovering images are better than the default parameter's for a single pixel camera experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吲哚完成签到 ,获得积分10
1秒前
3秒前
杰哥发布了新的文献求助50
3秒前
bkagyin应助满意之玉采纳,获得10
5秒前
5秒前
内向的小凡完成签到,获得积分10
6秒前
LINGO发布了新的文献求助10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
7秒前
打打应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
木头人完成签到,获得积分10
8秒前
苗条凡完成签到 ,获得积分10
8秒前
两棵大白菜完成签到,获得积分10
12秒前
困的不行发布了新的文献求助10
12秒前
CodeCraft应助坚定的水之采纳,获得10
13秒前
15秒前
Timon完成签到,获得积分10
16秒前
冲冲冲完成签到,获得积分10
18秒前
坚定的水之完成签到,获得积分10
20秒前
CodeCraft应助友好中心采纳,获得10
22秒前
22秒前
22秒前
烟花应助liv采纳,获得10
23秒前
25秒前
wbhou完成签到,获得积分10
27秒前
baibaibai完成签到,获得积分10
27秒前
wz0330发布了新的文献求助10
27秒前
sys完成签到,获得积分10
29秒前
31秒前
毛豆应助wbhou采纳,获得10
32秒前
32秒前
liv完成签到,获得积分10
33秒前
33秒前
icey完成签到,获得积分10
36秒前
科研通AI2S应助murry123采纳,获得10
40秒前
timemaster666完成签到,获得积分10
40秒前
CodeCraft应助咸蛋黄巧克力采纳,获得10
40秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Data Structures and Algorithms in Java: A Project-Based Approach 1000
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269377
求助须知:如何正确求助?哪些是违规求助? 2908885
关于积分的说明 8347159
捐赠科研通 2579096
什么是DOI,文献DOI怎么找? 1402608
科研通“疑难数据库(出版商)”最低求助积分说明 655470
邀请新用户注册赠送积分活动 634649