Non-SELEX Selection of Aptamers

指数富集配体系统进化 适体 化学 选择(遗传算法) 毛细管电泳 DNA 计算生物学 计算机科学 核糖核酸 色谱法 分子生物学 人工智能 生物 生物化学 基因
作者
Maxim V. Berezovski,Michael U. Musheev,Andrei P. Drabovich,Sergey N. Krylov
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:128 (5): 1410-1411 被引量:235
标识
DOI:10.1021/ja056943j
摘要

Aptamers are typically selected from libraries of random DNA (or RNA) sequences by SELEX, which involves multiple rounds of alternating steps of partitioning and PCR amplification. Here we report, for the first time, non-SELEX selection of aptamersa process that involves repetitive steps of partitioning with no amplification between them. A highly efficient affinity method, non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM), was used for partitioning. We found that three steps of NECEEM-based partitioning in the non-SELEX approach were sufficient to improve the affinity of a DNA library to a target protein by more than 4 orders of magnitude. The resulting affinity was higher than that of the enriched library obtained in three rounds of NECEEM-based SELEX. Remarkably, NECEEM-based non-SELEX selection took only 1 h in contrast to several days or several weeks required for a typical SELEX procedure by conventional partitioning methods. In addition, NECEEM-based non-SELEX allowed us to accurately measure the abundance of aptamers in the library. Not only does this work introduce an extremely fast and economical method for aptamer selection, but it also suggests that aptamers may be much more abundant than they are thought to be. Finally, this work opens the opportunity for selection of drug candidates from libraries of small molecules, which cannot be PCR-amplified and thus are not approachable by SELEX.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极诗霜完成签到,获得积分10
刚刚
chx123发布了新的文献求助10
1秒前
我是老大应助qiaoyun采纳,获得10
1秒前
刘文静完成签到,获得积分10
2秒前
尽落发布了新的文献求助10
3秒前
3秒前
4秒前
永远永远完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
合适的乐儿完成签到,获得积分10
6秒前
sswbzh应助风清扬采纳,获得50
7秒前
7秒前
7秒前
正念完成签到,获得积分10
8秒前
Orange应助心灵美的小伙采纳,获得10
8秒前
8秒前
8秒前
8秒前
寒水沉烟完成签到,获得积分10
8秒前
8秒前
充电宝应助九九采纳,获得10
9秒前
9秒前
怕黑寻双完成签到,获得积分10
9秒前
9秒前
9秒前
orixero应助王硕硕采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
llhh2024发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
13秒前
csy完成签到,获得积分10
13秒前
脱锦涛发布了新的文献求助10
13秒前
曹小曹发布了新的文献求助10
13秒前
14秒前
呆萌发布了新的文献求助10
14秒前
小蘑菇应助遇晴采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894