Non-SELEX Selection of Aptamers

指数富集配体系统进化 适体 化学 选择(遗传算法) 毛细管电泳 DNA 计算生物学 计算机科学 核糖核酸 色谱法 分子生物学 人工智能 生物 生物化学 基因
作者
Maxim V. Berezovski,Michael U. Musheev,Andrei P. Drabovich,Sergey N. Krylov
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:128 (5): 1410-1411 被引量:227
标识
DOI:10.1021/ja056943j
摘要

Aptamers are typically selected from libraries of random DNA (or RNA) sequences by SELEX, which involves multiple rounds of alternating steps of partitioning and PCR amplification. Here we report, for the first time, non-SELEX selection of aptamersa process that involves repetitive steps of partitioning with no amplification between them. A highly efficient affinity method, non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM), was used for partitioning. We found that three steps of NECEEM-based partitioning in the non-SELEX approach were sufficient to improve the affinity of a DNA library to a target protein by more than 4 orders of magnitude. The resulting affinity was higher than that of the enriched library obtained in three rounds of NECEEM-based SELEX. Remarkably, NECEEM-based non-SELEX selection took only 1 h in contrast to several days or several weeks required for a typical SELEX procedure by conventional partitioning methods. In addition, NECEEM-based non-SELEX allowed us to accurately measure the abundance of aptamers in the library. Not only does this work introduce an extremely fast and economical method for aptamer selection, but it also suggests that aptamers may be much more abundant than they are thought to be. Finally, this work opens the opportunity for selection of drug candidates from libraries of small molecules, which cannot be PCR-amplified and thus are not approachable by SELEX.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
若E18完成签到,获得积分10
1秒前
CipherSage应助hua采纳,获得10
2秒前
2秒前
隐形曼青应助阿甲采纳,获得10
3秒前
3秒前
4秒前
4秒前
要减肥靳完成签到,获得积分10
4秒前
4秒前
山的那边完成签到,获得积分20
5秒前
ybyb发布了新的文献求助10
5秒前
5秒前
YOUNG-M完成签到,获得积分10
5秒前
6秒前
淡然的花卷完成签到,获得积分10
6秒前
何劲松完成签到,获得积分10
7秒前
7秒前
513发布了新的文献求助10
8秒前
Wshtiiiii发布了新的文献求助10
8秒前
LMFY发布了新的文献求助10
9秒前
dmj发布了新的文献求助10
9秒前
CipherSage应助sc采纳,获得10
9秒前
9秒前
俏皮的雨泽完成签到,获得积分10
10秒前
10秒前
Yolanda完成签到,获得积分10
11秒前
11秒前
11秒前
顾北发布了新的文献求助10
11秒前
ipainkiller发布了新的文献求助10
11秒前
棋朵朵发布了新的文献求助10
12秒前
12秒前
可靠的书桃应助SenA采纳,获得10
13秒前
hua发布了新的文献求助10
14秒前
星弟发布了新的文献求助10
14秒前
星辰完成签到,获得积分10
14秒前
Cyber_relic发布了新的文献求助10
15秒前
充电宝应助娃娃tvxq采纳,获得10
15秒前
赵旭东完成签到,获得积分20
15秒前
ybyb完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135928
求助须知:如何正确求助?哪些是违规求助? 2786670
关于积分的说明 7779194
捐赠科研通 2442969
什么是DOI,文献DOI怎么找? 1298748
科研通“疑难数据库(出版商)”最低求助积分说明 625219
版权声明 600870