Non-SELEX Selection of Aptamers

指数富集配体系统进化 适体 化学 选择(遗传算法) 毛细管电泳 DNA 计算生物学 计算机科学 核糖核酸 色谱法 分子生物学 人工智能 生物 生物化学 基因
作者
Maxim V. Berezovski,Michael U. Musheev,Andrei P. Drabovich,Sergey N. Krylov
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:128 (5): 1410-1411 被引量:235
标识
DOI:10.1021/ja056943j
摘要

Aptamers are typically selected from libraries of random DNA (or RNA) sequences by SELEX, which involves multiple rounds of alternating steps of partitioning and PCR amplification. Here we report, for the first time, non-SELEX selection of aptamersa process that involves repetitive steps of partitioning with no amplification between them. A highly efficient affinity method, non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM), was used for partitioning. We found that three steps of NECEEM-based partitioning in the non-SELEX approach were sufficient to improve the affinity of a DNA library to a target protein by more than 4 orders of magnitude. The resulting affinity was higher than that of the enriched library obtained in three rounds of NECEEM-based SELEX. Remarkably, NECEEM-based non-SELEX selection took only 1 h in contrast to several days or several weeks required for a typical SELEX procedure by conventional partitioning methods. In addition, NECEEM-based non-SELEX allowed us to accurately measure the abundance of aptamers in the library. Not only does this work introduce an extremely fast and economical method for aptamer selection, but it also suggests that aptamers may be much more abundant than they are thought to be. Finally, this work opens the opportunity for selection of drug candidates from libraries of small molecules, which cannot be PCR-amplified and thus are not approachable by SELEX.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搞怪路灯完成签到,获得积分10
1秒前
1秒前
1秒前
爱吃巧乐兹完成签到,获得积分10
1秒前
2秒前
百杜完成签到,获得积分20
2秒前
NexusExplorer应助Moter采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
华仔应助Katyusha采纳,获得10
4秒前
4秒前
麻花完成签到,获得积分10
4秒前
4秒前
千凡发布了新的文献求助10
5秒前
年年sci发布了新的文献求助10
5秒前
慕青应助NXK采纳,获得10
5秒前
传奇3应助从容芸采纳,获得20
6秒前
Oops发布了新的文献求助10
6秒前
刘玄德发布了新的文献求助10
6秒前
机智的凡梦完成签到,获得积分10
6秒前
LRR发布了新的文献求助10
6秒前
7秒前
Lin完成签到,获得积分10
7秒前
星星炒蛋完成签到,获得积分10
7秒前
张铭哲发布了新的文献求助10
7秒前
顾矜应助qqz采纳,获得10
8秒前
MY999完成签到,获得积分10
8秒前
嘟嘟嘟嘟嘟完成签到,获得积分10
8秒前
8秒前
竹子发布了新的文献求助20
9秒前
9秒前
9秒前
共享精神应助hopeseason采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
liuchuck驳回了Ava应助
9秒前
嘿ha发布了新的文献求助10
10秒前
Tea233发布了新的文献求助10
10秒前
共享精神应助天气晴朗采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668030
求助须知:如何正确求助?哪些是违规求助? 4889242
关于积分的说明 15123064
捐赠科研通 4826923
什么是DOI,文献DOI怎么找? 2584432
邀请新用户注册赠送积分活动 1538259
关于科研通互助平台的介绍 1496590