Non-SELEX Selection of Aptamers

指数富集配体系统进化 适体 化学 选择(遗传算法) 毛细管电泳 DNA 计算生物学 计算机科学 核糖核酸 色谱法 分子生物学 人工智能 生物 生物化学 基因
作者
Maxim V. Berezovski,Michael U. Musheev,Andrei P. Drabovich,Sergey N. Krylov
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:128 (5): 1410-1411 被引量:235
标识
DOI:10.1021/ja056943j
摘要

Aptamers are typically selected from libraries of random DNA (or RNA) sequences by SELEX, which involves multiple rounds of alternating steps of partitioning and PCR amplification. Here we report, for the first time, non-SELEX selection of aptamersa process that involves repetitive steps of partitioning with no amplification between them. A highly efficient affinity method, non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM), was used for partitioning. We found that three steps of NECEEM-based partitioning in the non-SELEX approach were sufficient to improve the affinity of a DNA library to a target protein by more than 4 orders of magnitude. The resulting affinity was higher than that of the enriched library obtained in three rounds of NECEEM-based SELEX. Remarkably, NECEEM-based non-SELEX selection took only 1 h in contrast to several days or several weeks required for a typical SELEX procedure by conventional partitioning methods. In addition, NECEEM-based non-SELEX allowed us to accurately measure the abundance of aptamers in the library. Not only does this work introduce an extremely fast and economical method for aptamer selection, but it also suggests that aptamers may be much more abundant than they are thought to be. Finally, this work opens the opportunity for selection of drug candidates from libraries of small molecules, which cannot be PCR-amplified and thus are not approachable by SELEX.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
薛十七完成签到,获得积分10
1秒前
2秒前
3秒前
藜誌发布了新的文献求助10
3秒前
wanci应助阳光的青槐采纳,获得10
3秒前
风中小刺猬完成签到,获得积分10
3秒前
明亮的诗兰完成签到,获得积分20
3秒前
liumou完成签到,获得积分10
4秒前
chenqiumu应助科研通管家采纳,获得20
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
chenqiumu应助科研通管家采纳,获得20
4秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
通行证应助科研通管家采纳,获得10
5秒前
chenqiumu应助科研通管家采纳,获得20
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
玄风应助科研通管家采纳,获得10
5秒前
玄风应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
sunny完成签到,获得积分10
5秒前
科研通AI6应助科研通管家采纳,获得80
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
chenqiumu应助科研通管家采纳,获得20
5秒前
hs应助科研通管家采纳,获得30
5秒前
玄风应助科研通管家采纳,获得20
5秒前
无极微光应助科研通管家采纳,获得20
6秒前
6秒前
6秒前
haaay发布了新的文献求助10
6秒前
6秒前
猪猪hero发布了新的文献求助30
7秒前
扶丽君完成签到,获得积分10
7秒前
Owen应助书桃采纳,获得30
8秒前
华北走地鸡完成签到,获得积分10
8秒前
科研通AI2S应助牛与马采纳,获得10
8秒前
yiannanan完成签到 ,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505397
求助须知:如何正确求助?哪些是违规求助? 4600897
关于积分的说明 14474868
捐赠科研通 4535091
什么是DOI,文献DOI怎么找? 2485112
邀请新用户注册赠送积分活动 1468204
关于科研通互助平台的介绍 1440675