摘要
Previous articleNext article No AccessNotes and CommentsArguments in Favor of Higher Order InteractionsPeter A. AbramsPeter A. Abrams Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The American Naturalist Volume 121, Number 6Jun., 1983 Published for The American Society of Naturalists Article DOIhttps://doi.org/10.1086/284111 Views: 48Total views on this site Citations: 60Citations are reported from Crossref Copyright 1983 The University of ChicagoPDF download Crossref reports the following articles citing this article:Andrew R. Kleinhesselink, Nathan J. B. Kraft, Stephen W. Pacala, Jonathan M. Levine, Frederick Adler Detecting and interpreting higher‐order interactions in ecological communities, Ecology Letters 25, no.77 (Jun 2022): 1604–1617.https://doi.org/10.1111/ele.14022Ruyuan Qu, Hui Feng, Chongbin Xu, Bo Hu Analysis of Hypergraph Signals via High-Order Total Variation, Symmetry 14, no.33 (Mar 2022): 543.https://doi.org/10.3390/sym14030543Md Sayeed Anwar, Dibakar Ghosh Intralayer and interlayer synchronization in multiplex network with higher-order interactions, Chaos: An Interdisciplinary Journal of Nonlinear Science 32, no.33 (Mar 2022): 033125.https://doi.org/10.1063/5.0074641Hao Ran Lai, Kwek Yan Chong, Alex Thiam Koon Yee, Margaret M. Mayfield, Daniel B. Stouffer Non‐additive biotic interactions improve predictions of tropical tree growth and impact community size structure, Ecology 103, no.22 (Dec 2021).https://doi.org/10.1002/ecy.3588Timoteo Carletti, Duccio Fanelli Pattern Formation on Hypergraphs, (Apr 2022): 163–180.https://doi.org/10.1007/978-3-030-91374-8_5Weston D. Viles, Juliette C. Madan, Hongzhe Li, Margaret R. Karagas, Anne G. Hoen Information content of high-order associations of the human gut microbiota network, The Annals of Applied Statistics 15, no.44 (Dec 2021).https://doi.org/10.1214/21-AOAS1449T. Böhle, C. Kuehn, R. Mulas, J. Jost Coupled hypergraph maps and chaotic cluster synchronization, Europhysics Letters 136, no.44 (Mar 2022): 40005.https://doi.org/10.1209/0295-5075/ac1a26Yuanzhi Li, Margaret M Mayfield, Bin Wang, Junli Xiao, Kamil Kral, David Janik, Jan Holik, Chengjin Chu Beyond direct neighbourhood effects: higher-order interactions improve modelling and predicting tree survival and growth, National Science Review 8, no.55 (Sep 2020).https://doi.org/10.1093/nsr/nwaa244Trace E. Martyn, Daniel B. Stouffer, Oscar Godoy, Ignasi Bartomeus, Abigail I. Pastore, and Margaret M. Mayfield Identifying “Useful” Fitness Models: Balancing the Benefits of Added Complexity with Realistic Data Requirements in Models of Individual Plant Fitness, The American Naturalist 197, no.44 (Mar 2021): 415–433.https://doi.org/10.1086/713082Daniel B. Stouffer, Mark Novak, Otso Ovaskainen Hidden layers of density dependence in consumer feeding rates, Ecology Letters 24, no.33 (Jan 2021): 520–532.https://doi.org/10.1111/ele.13670Pragya Singh, Gaurav Baruah Higher order interactions and species coexistence, Theoretical Ecology 14, no.11 (Sep 2020): 71–83.https://doi.org/10.1007/s12080-020-00481-8Ugur Sak The Fuzzy Conception of Giftedness, (Dec 2020): 371–392.https://doi.org/10.1007/978-3-030-56869-6_21Mario E. Muscarella, James P. O’Dwyer Species dynamics and interactions via metabolically informed consumer-resource models, Theoretical Ecology 13, no.44 (Jul 2020): 503–518.https://doi.org/10.1007/s12080-020-00466-7Maria M. Martignoni, Miranda M. Hart, Jimmy Garnier, Rebecca C. Tyson Parasitism within mutualist guilds explains the maintenance of diversity in multi-species mutualisms, Theoretical Ecology 13, no.44 (Jul 2020): 615–627.https://doi.org/10.1007/s12080-020-00472-9Timoteo Carletti, Duccio Fanelli, Sara Nicoletti Dynamical systems on hypergraphs, Journal of Physics: Complexity 1, no.33 (Aug 2020): 035006.https://doi.org/10.1088/2632-072X/aba8e1Mohammad AlAdwani, Serguei Saavedra Ecological models: higher complexity in, higher feasibility out, Journal of The Royal Society Interface 17, no.172172 (Nov 2020): 20200607.https://doi.org/10.1098/rsif.2020.0607Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas, Alice Patania, Jean-Gabriel Young, Giovanni Petri Networks beyond pairwise interactions: Structure and dynamics, Physics Reports 874 (Aug 2020): 1–92.https://doi.org/10.1016/j.physrep.2020.05.004Junli Xiao, Yuanzhi Li, Chengjin Chu, Youshi Wang, Scott J Meiners, Daniel B Stouffer Higher-order interactions mitigate direct negative effects on population dynamics of herbaceous plants during succession, Environmental Research Letters 15, no.77 (Jul 2020): 074023.https://doi.org/10.1088/1748-9326/ab8a88Raffaella Mulas, Christian Kuehn, Jürgen Jost Coupled dynamics on hypergraphs: Master stability of steady states and synchronization, Physical Review E 101, no.66 (Jun 2020).https://doi.org/10.1103/PhysRevE.101.062313Zoi Rapti Nonlinearity and Biology, (May 2020): 1–24.https://doi.org/10.1007/978-3-030-44992-6_1Mohammad AlAdwani, Serguei Saavedra Is the addition of higher-order interactions in ecological models increasing the understanding of ecological dynamics?, Mathematical Biosciences 315 (Sep 2019): 108222.https://doi.org/10.1016/j.mbs.2019.108222Andrew D. Letten, Daniel B. Stouffer, Robin Snyder The mechanistic basis for higher-order interactions and non-additivity in competitive communities, Ecology Letters 22, no.33 (Jan 2019): 423–436.https://doi.org/10.1111/ele.13211Hugo Fort On predicting species yields in multispecies communities: Quantifying the accuracy of the linear Lotka-Volterra generalized model, Ecological Modelling 387 (Nov 2018): 154–162.https://doi.org/10.1016/j.ecolmodel.2018.09.009Hugo Fort Quantitative predictions from competition theory with an incomplete knowledge of model parameters tested against experiments across diverse taxa, Ecological Modelling 368 (Jan 2018): 104–110.https://doi.org/10.1016/j.ecolmodel.2017.11.002J. Christopher D. Terry, Rebecca J. Morris, Michael B. Bonsall, James Grover Trophic interaction modifications: an empirical and theoretical framework, Ecology Letters 20, no.1010 (Sep 2017): 1219–1230.https://doi.org/10.1111/ele.12824Jacopo Grilli, György Barabás, Matthew J. Michalska-Smith, Stefano Allesina Higher-order interactions stabilize dynamics in competitive network models, Nature 548, no.76667666 (Jul 2017): 210–213.https://doi.org/10.1038/nature23273Jonathan M. Levine, Jordi Bascompte, Peter B. Adler, Stefano Allesina Beyond pairwise mechanisms of species coexistence in complex communities, Nature 546, no.76567656 (Jun 2017): 56–64.https://doi.org/10.1038/nature22898Daniel S. Maynard, Mark A. Bradford, Daniel L. Lindner, Linda T. A. van Diepen, Serita D. Frey, Jessie A. Glaeser, Thomas W. Crowther Diversity begets diversity in competition for space, Nature Ecology & Evolution 1, no.66 (May 2017).https://doi.org/10.1038/s41559-017-0156F. Dalerum, P. Hellström, M. Miranda, J. Nyström, J. Ekenstedt, A. Angerbjörn Network topology of stable isotope interactions in a sub-arctic raptor guild, Oecologia 182, no.22 (May 2016): 511–518.https://doi.org/10.1007/s00442-016-3658-6Gary M. Bucciarelli, Lee B. Kats Effects of newt chemical cues on the distribution and foraging behavior of stream macroinvertebrates, Hydrobiologia 749, no.11 (Dec 2014): 69–81.https://doi.org/10.1007/s10750-014-2146-4Stefan A.H. Geritz, Éva Kisdi, Christopher A. Klausmeier Introduction to special issue, Journal of Theoretical Biology 339 (Dec 2013): 1–2.https://doi.org/10.1016/j.jtbi.2013.09.008Antonio J. Golubski, Peter A. Abrams Modifying modifiers: what happens when interspecific interactions interact?, Journal of Animal Ecology 80, no.55 (May 2011): 1097–1108.https://doi.org/10.1111/j.1365-2656.2011.01852.xF. J. Frank van Veen, Callum E. Brandon, H. Charles J. Godfray A positive trait-mediated indirect effect involving the natural enemies of competing herbivores, Oecologia 160, no.11 (Feb 2009): 195–205.https://doi.org/10.1007/s00442-009-1288-yPavel Kratina, Matthijs Vos, Bradley R. Anholt SPECIES DIVERSITY MODULATES PREDATION, Ecology 88, no.88 (Aug 2007): 1917–1923.https://doi.org/10.1890/06-1507.1ALEXANDRA WEIGELT, JENS SCHUMACHER, TIM WALTHER, MAIK BARTELHEIMER, TOM STEINLEIN, WOLFRAM BEYSCHLAG Identifying mechanisms of competition in multi-species communities, Journal of Ecology 95, no.11 (Jan 2007): 53–64.https://doi.org/10.1111/j.1365-2745.2006.01198.xFerenc Jordán, Wei-chung Liu, Andrew J. Davis Topological keystone species: measures of positional importance in food webs, Oikos 112, no.33 (Mar 2006): 535–546.https://doi.org/10.1111/j.0030-1299.2006.13724.xJ. Timothy Wootton, Mark Emmerson Measurement of Interaction Strength in Nature, Annual Review of Ecology, Evolution, and Systematics 36, no.11 (Dec 2005): 419–444.https://doi.org/10.1146/annurev.ecolsys.36.091704.175535 Yan B. Linhart , Ken Keefover‐Ring , Kailen A. Mooney , Bianca Breland , and John D. Thompson A Chemical Polymorphism in a Multitrophic Setting: Thyme Monoterpene Composition and Food Web Structure. Y. B. Linhart et al., The American Naturalist 166, no.44 (Jul 2015): 517–529.https://doi.org/10.1086/444438Ferenc Jordán, István Scheuring Network ecology: topological constraints on ecosystem dynamics, Physics of Life Reviews 1, no.33 (Dec 2004): 139–172.https://doi.org/10.1016/j.plrev.2004.08.001D. Rae Barnhisel, W. Charles Kerfoot Fitting into Food Webs: Behavioral and Functional Response of Young Lake Trout (Salvelinus namaycush) to an Introduced Prey, the Spiny Cladoceran (Bythotrephes cederstroemi), Journal of Great Lakes Research 30 (Jan 2004): 300–314.https://doi.org/10.1016/S0380-1330(04)70393-7F. Jordán, W.-C. Liu, J.F. van Veen Quantifying the importance of species and their interactions in a host-parasitoid community, Community Ecology 4, no.11 (Jun 2003): 79–88.https://doi.org/10.1556/ComEc.4.2003.1.12Geoffrey C. Trussell, Patrick J. Ewanchuk, Mark D. Bertness TRAIT-MEDIATED EFFECTS IN ROCKY INTERTIDAL FOOD CHAINS: PREDATOR RISK CUES ALTER PREY FEEDING RATES, Ecology 84, no.33 (Mar 2003): 629–640.https://doi.org/10.1890/0012-9658(2003)084[0629:TMEIRI]2.0.CO;2F. Jordán, I. Scheuring Searching for keystones in ecological networks, Oikos 99, no.33 (Mar 2003): 607–612.https://doi.org/10.1034/j.1600-0706.2002.11889.xJ.Timothy Wootton Indirect effects in complex ecosystems: recent progress and future challenges, Journal of Sea Research 48, no.22 (Oct 2002): 157–172.https://doi.org/10.1016/S1385-1101(02)00149-1J. H. Brown Complex Species Interactions and the Dynamics of Ecological Systems: Long-Term Experiments, Science 293, no.55305530 (Jul 2001): 643–650.https://doi.org/10.1126/science.293.5530.643F. Jordán Strong threads and weak chains? - a graph theoretical estimation of the power of indirect effects, Community Ecology 2, no.11 (Jun 2001): 17–20.https://doi.org/10.1556/ComEc.2.2001.1.2Rick A. Relyea TRAIT-MEDIATED INDIRECT EFFECTS IN LARVAL ANURANS: REVERSING COMPETITION WITH THE THREAT OF PREDATION, Ecology 81, no.88 (Aug 2000): 2278–2289.https://doi.org/10.1890/0012-9658(2000)081[2278:TMIEIL]2.0.CO;2Scott D. Peacor, Earl E. Werner PREDATOR EFFECTS ON AN ASSEMBLAGE OF CONSUMERS THROUGH INDUCED CHANGES IN CONSUMER FORAGING BEHAVIOR, Ecology 81, no.77 (Jul 2000): 1998–2010.https://doi.org/10.1890/0012-9658(2000)081[1998:PEOAAO]2.0.CO;2K. R. Gastreich TRAIT-MEDIATED INDIRECT EFFECTS OF A THERIDIID SPIDER ON AN ANT-PLANT MUTUALISM, Ecology 80, no.33 (Apr 1999): 1066–1070.https://doi.org/10.1890/0012-9658(1999)080[1066:TMIEOA]2.0.CO;2Luis Zambrano, Demián Hinojosa Direct and indirect effects of carp (Cyprinus carpio L.) on macrophyte and benthic communities in experimental shallow ponds in central Mexico, (Jan 1999): 131–138.https://doi.org/10.1007/978-94-017-2986-4_13Mark D. Bertness, George H. Leonard THE ROLE OF POSITIVE INTERACTIONS IN COMMUNITIES: LESSONS FROM INTERTIDAL HABITATS, Ecology 78, no.77 (Oct 1997): 1976–1989.https://doi.org/10.1890/0012-9658(1997)078[1976:TROPII]2.0.CO;2J Burger Methods for and approaches to evaluating susceptibility of ecological systems to hazardous chemicals., Environmental Health Perspectives 105, no.suppl 4suppl 4 (Jun 1997): 843–848.https://doi.org/10.1289/ehp.97105s4843Scott D. Peacor, Earl E. Werner TRAIT-MEDIATED INDIRECT INTERACTIONS IN A SIMPLE AQUATIC FOOD WEB, Ecology 78, no.44 (Jun 1997): 1146–1156.https://doi.org/10.1890/0012-9658(1997)078[1146:TMIIIA]2.0.CO;2William B. Richardson, Stephen T. Threlkeld Complex Interactions of Multiple Aquatic Consumers: An Experimental Mesocosm Manipulation, Canadian Journal of Fisheries and Aquatic Sciences 50, no.11 (Jan 1993): 29–42.https://doi.org/10.1139/f93-004 Henry M. Wilbur , and John E. Fauth Experimental Aquatic Food Webs: Interactions between Two Predators and Two Prey, The American Naturalist 135, no.22 (Oct 2015): 176–204.https://doi.org/10.1086/285038Peter A. Abrams The nonlinearity of competitive effects in models of competition for essential resources, Theoretical Population Biology 32, no.11 (Aug 1987): 50–65.https://doi.org/10.1016/0040-5809(87)90039-6R. Buckley Ant-Plant-Homopteran Interactions, (Jan 1987): 53–85.https://doi.org/10.1016/S0065-2504(08)60087-2Peter A. Abrams Character displacement and niche shift analyzed using consumer-resource models of competition, Theoretical Population Biology 29, no.11 (Feb 1986): 107–160.https://doi.org/10.1016/0040-5809(86)90007-9Robert D. Holt Density-independent mortality, non-linear competitive interactions, and species coexistence, Journal of Theoretical Biology 116, no.44 (Oct 1985): 479–493.https://doi.org/10.1016/S0022-5193(85)80084-9Andre Knop, Louis A. Pilato High Technology and New Applications, (Jan 1985): 156–174.https://doi.org/10.1007/978-3-662-02429-4_10