煤粉锅炉
煤
烧焦
燃烧
化学
烟煤
废物管理
粒子(生态学)
化学工程
矿物学
有机化学
工程类
地质学
海洋学
作者
Jianglong Yu,John Lucas,Terry Wall
标识
DOI:10.1016/j.pecs.2006.07.003
摘要
The paper provides an overview of current studies on the behaviour of coal during devolatilization, especially the experimental studies and modelling efforts on the formation of char structure of bituminous coals in the open literature. Coal is the most abundant fossil fuel in the world. It dominates the energy supply in the future and plays an increasing role particularly in the developing countries. Coal utilization processes such as combustion or gasification generally involve several steps: i.e., the devolatilization of organic materials, homogeneous reactions of volatile matter with the reactant gases and heterogeneous reactions of chars with the reactant gases. The devolatilization process exerts its influence throughout the life of the solid particles from the injection to the burnout, therefore is the most important step which needs to be understood. When volatile matter is generated, the physical structure of a char changes significantly during the devolatilization, some accompanying a particle's swelling. The complexity of a char's structure lies in the facts that the structure of a char itself is highly heterogenous inside an individual particle and between different particles and the chemistry of a char is strongly dependent on the raw coal properties. A char's structure is strongly dependent on the heating conditions such as temperature, heating rate and pressure. Understanding the swelling of coal and the formation of char's pore structure during the devolatilization of pulverized coal is essential to the development of advanced coal utilization technologies. During combustion and gasification of pulverized coal, the behaviour of individual particles differs markedly due to the variation of their maceral composition. Particles with different maceral constituents generate different types of char structure. The structure of a char has a significant impact on its subsequent heterogeneous reactions and ash formation. The review also covers the most recent studies carried out by the authors, including the experimental observations of the thermoplastic behaviour of individual coal particles from the density fractions using a single-particle reactor, the experimental analysis on chars prepared in a drop tube furnace using the density-separated coal samples, the development of a mathematical model for the formation of char's pore structure based on a simplified multi-bubble mechanism and the investigation on the effect of pressure on char formation in a pressurized entrained-flow reactor.
科研通智能强力驱动
Strongly Powered by AbleSci AI