Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study

混合模型 潜在类模型 统计 协方差 计量经济学 班级(哲学) 贝叶斯概率 样本量测定 信息标准 人口 贝叶斯信息准则 统计模型 结构方程建模 数学 计算机科学 心理学 人工智能 选型 人口学 社会学
作者
Karen Nylund‐Gibson,Tihomir Asparouhov,Bengt Muthén
出处
期刊:Structural Equation Modeling [Informa]
卷期号:14 (4): 535-569 被引量:9019
标识
DOI:10.1080/10705510701575396
摘要

Abstract Mixture modeling is a widely applied data analysis technique used to identify unobserved heterogeneity in a population. Despite mixture models' usefulness in practice, one unresolved issue in the application of mixture models is that there is not one commonly accepted statistical indicator for deciding on the number of classes in a study population. This article presents the results of a simulation study that examines the performance of likelihood-based tests and the traditionally used Information Criterion (ICs) used for determining the number of classes in mixture modeling. We look at the performance of these tests and indexes for 3 types of mixture models: latent class analysis (LCA), a factor mixture model (FMA), and a growth mixture models (GMM). We evaluate the ability of the tests and indexes to correctly identify the number of classes at three different sample sizes (n = 200, 500, 1,000). Whereas the Bayesian Information Criterion performed the best of the ICs, the bootstrap likelihood ratio test proved to be a very consistent indicator of classes across all of the models considered. ACKNOWLEDGMENTS Karen L. Nylund's research was supported by Grant R01 DA11796 from the National Institute on Drug Abuse (NIDA) and Bengt O. Muthén's research was supported by Grant K02 AA 00230 from the National Institute on Alcohol Abuse and Alcoholism (NIAAA). We thank Mplus for software support, Jacob Cheadle for programming expertise, and Katherine Masyn for helpful comments. Notes 1In general, the within-class covariance structure can be freed to allow within-class item covariance. a Item probabilities for categorical LCA models are specified by the probability in each cell, and the class means for the continuous LCA are specified by the value in parentheses. 2The number random starts for LCA models with categorical outcomes was specified to be "starts = 70 7;" in Mplus. The models with continuous outcomes had differing numbers of random starts. 3It is important to note that when coverage is studied, the random starts option of Mplus should not be used. If it is used, label switching may occur, in that a class for one replication might be represented by another class for another replication, therefore distorting the estimate. 4The models that presented convergence problems were those that were badly misspecified. For example, for the GMM (true k = 3 class model) for n = 500, the convergence rates for the three-, four-, and five-class models were 100%, 87%, and 68%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助曾泓跃采纳,获得20
刚刚
哈哈哈发布了新的文献求助10
刚刚
拉风中带点萌完成签到,获得积分10
刚刚
稳重的傲芙完成签到,获得积分20
刚刚
刚刚
kingwill应助Gilana采纳,获得20
刚刚
1秒前
linshunan发布了新的文献求助10
1秒前
1秒前
melon完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
4秒前
Jasper应助have勇气采纳,获得10
4秒前
夜骐发布了新的文献求助10
4秒前
善良西装发布了新的文献求助10
4秒前
Jasper应助Gilana采纳,获得10
5秒前
我是老大应助gggja采纳,获得10
5秒前
5秒前
tae117发布了新的文献求助10
5秒前
大个应助背后的又蓝采纳,获得10
5秒前
Artemis发布了新的文献求助10
6秒前
绝不延毕发布了新的文献求助10
6秒前
6秒前
6秒前
就5565发布了新的文献求助10
7秒前
7秒前
兴奋悟空完成签到 ,获得积分10
8秒前
无限鸵鸟完成签到 ,获得积分10
8秒前
小马甲应助qq采纳,获得10
8秒前
疯狂的雁荷完成签到,获得积分10
8秒前
嗯qq完成签到,获得积分20
8秒前
顺心电话发布了新的文献求助10
9秒前
10秒前
11秒前
ASD123发布了新的文献求助10
11秒前
12秒前
义气的靖柏完成签到,获得积分10
12秒前
希望天下0贩的0应助嗯qq采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553582
求助须知:如何正确求助?哪些是违规求助? 3129521
关于积分的说明 9382550
捐赠科研通 2828636
什么是DOI,文献DOI怎么找? 1555065
邀请新用户注册赠送积分活动 725800
科研通“疑难数据库(出版商)”最低求助积分说明 715212