Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study

混合模型 潜在类模型 统计 协方差 计量经济学 班级(哲学) 贝叶斯概率 样本量测定 信息标准 人口 贝叶斯信息准则 统计模型 结构方程建模 数学 计算机科学 心理学 人工智能 选型 人口学 社会学
作者
Karen Nylund‐Gibson,Tihomir Asparouhov,Bengt Muthén
出处
期刊:Structural Equation Modeling [Taylor & Francis]
卷期号:14 (4): 535-569 被引量:9305
标识
DOI:10.1080/10705510701575396
摘要

Abstract Mixture modeling is a widely applied data analysis technique used to identify unobserved heterogeneity in a population. Despite mixture models' usefulness in practice, one unresolved issue in the application of mixture models is that there is not one commonly accepted statistical indicator for deciding on the number of classes in a study population. This article presents the results of a simulation study that examines the performance of likelihood-based tests and the traditionally used Information Criterion (ICs) used for determining the number of classes in mixture modeling. We look at the performance of these tests and indexes for 3 types of mixture models: latent class analysis (LCA), a factor mixture model (FMA), and a growth mixture models (GMM). We evaluate the ability of the tests and indexes to correctly identify the number of classes at three different sample sizes (n = 200, 500, 1,000). Whereas the Bayesian Information Criterion performed the best of the ICs, the bootstrap likelihood ratio test proved to be a very consistent indicator of classes across all of the models considered. ACKNOWLEDGMENTS Karen L. Nylund's research was supported by Grant R01 DA11796 from the National Institute on Drug Abuse (NIDA) and Bengt O. Muthén's research was supported by Grant K02 AA 00230 from the National Institute on Alcohol Abuse and Alcoholism (NIAAA). We thank Mplus for software support, Jacob Cheadle for programming expertise, and Katherine Masyn for helpful comments. Notes 1In general, the within-class covariance structure can be freed to allow within-class item covariance. a Item probabilities for categorical LCA models are specified by the probability in each cell, and the class means for the continuous LCA are specified by the value in parentheses. 2The number random starts for LCA models with categorical outcomes was specified to be "starts = 70 7;" in Mplus. The models with continuous outcomes had differing numbers of random starts. 3It is important to note that when coverage is studied, the random starts option of Mplus should not be used. If it is used, label switching may occur, in that a class for one replication might be represented by another class for another replication, therefore distorting the estimate. 4The models that presented convergence problems were those that were badly misspecified. For example, for the GMM (true k = 3 class model) for n = 500, the convergence rates for the three-, four-, and five-class models were 100%, 87%, and 68%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
高高初柔发布了新的文献求助10
3秒前
ZY发布了新的文献求助10
5秒前
猪猪hero应助Quinna采纳,获得10
5秒前
诚心的大炮完成签到,获得积分10
6秒前
kikyo发布了新的文献求助10
6秒前
风清扬应助个性的傲安采纳,获得50
7秒前
标致绮露发布了新的文献求助10
7秒前
yishan101发布了新的文献求助20
7秒前
7秒前
8秒前
8秒前
9秒前
Alvin发布了新的文献求助10
9秒前
泰裤辣发布了新的文献求助10
10秒前
HOO关闭了HOO文献求助
11秒前
皆可完成签到 ,获得积分10
11秒前
xyff2002发布了新的文献求助10
12秒前
大个应助ZY采纳,获得10
12秒前
科研废完成签到,获得积分10
12秒前
樊樊完成签到,获得积分10
14秒前
猪猪hero应助觅海采纳,获得10
14秒前
14秒前
悦悦完成签到,获得积分10
15秒前
zkexuan完成签到,获得积分10
15秒前
丰富语儿发布了新的文献求助10
15秒前
皆可关注了科研通微信公众号
15秒前
吴南宛完成签到,获得积分20
18秒前
18秒前
wangmou完成签到,获得积分10
19秒前
小笼包发布了新的文献求助10
19秒前
19秒前
21秒前
Alpenliebe完成签到,获得积分10
22秒前
华仔应助默默的白莲采纳,获得10
23秒前
科研通AI2S应助Quinna采纳,获得30
24秒前
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959705
求助须知:如何正确求助?哪些是违规求助? 3505951
关于积分的说明 11127133
捐赠科研通 3237931
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871709
科研通“疑难数据库(出版商)”最低求助积分说明 802976