UHPLC‐TOFMS coupled with chemometric method as a powerful technique for rapid exploring of differentiating components between two Ziziphus species

绿原酸 化学 酸枣 色谱法 芦丁 枣属 化学计量学 棕榈油酸 偏最小二乘回归 化学型 芍药苷 线性判别分析 代谢组学 高效液相色谱法 精油 棕榈酸 植物 人工智能 数学 生物 有机化学 脂肪酸 统计 计算机科学 抗氧化剂
作者
Sheng Guo,Jin‐Ao Duan,Yuping Tang,Dawei Qian,Zhenhua Zhu,Yefei Qian,Erxin Shang,Shulan Su
出处
期刊:Journal of Separation Science [Wiley]
卷期号:34 (6): 659-666 被引量:27
标识
DOI:10.1002/jssc.201000788
摘要

Abstract To rapidly explore the differentiating components and the potential chemical markers for discrimination between those Chinese medicinal herbs with similar chemical characteristics, an ultra‐high‐performance liquid chromatography (UHPLC)‐TOFMS coupled with multivariate statistical analysis method was proposed and validated by using two Ziziphus species ( Z. jujuba and Z. jujuba var. spinosa ) as the model herbs. After the samples were analyzed using UHPLC‐TOFMS, the data sets of retention time (RT)‐ m / z pairs, ion intensities and sample codes were further processed with orthogonal partial least squared discriminant analysis (OPLS‐DA) to holistically compare the difference between the fruits of these two Ziziphus species, and to generate an S‐plot. Those compounds correlating to the points at the two ends of “S” were regarded as the most differentiating components between these two kinds of samples. By comparing the mass/UV spectra and retention times with those of reference compounds, these components were finally characterized as zizyberenalic acid, palmitoleic acid, oleic acid, pomonic acid and rutin, and these compounds would be the potential chemical markers for discrimination of these jujube products. The results suggested that this newly established approach could be used to rapidly determine the subtle differences and explore the potential chemical markers for differentiation within the herbs with similar chemical ingredients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无情碧灵发布了新的文献求助10
1秒前
背后青筠发布了新的文献求助10
1秒前
Eourique完成签到,获得积分20
1秒前
lwz关闭了lwz文献求助
2秒前
2秒前
温暖宛筠发布了新的文献求助10
3秒前
murron完成签到,获得积分10
3秒前
虞丹萱发布了新的文献求助10
3秒前
ym发布了新的文献求助10
3秒前
SHI关闭了SHI文献求助
3秒前
Barnett发布了新的文献求助10
3秒前
椰茶发布了新的文献求助50
4秒前
科研小白发布了新的文献求助10
4秒前
Nature应助祁尒采纳,获得10
4秒前
蔡丽露完成签到,获得积分10
4秒前
5秒前
ttt发布了新的文献求助10
6秒前
加油少年发布了新的文献求助10
6秒前
ctttt发布了新的文献求助10
6秒前
7秒前
Lucas应助鱿鱼采纳,获得10
7秒前
miemiemie94完成签到,获得积分20
8秒前
v啦啦啦啦发布了新的文献求助10
8秒前
8秒前
吴畅发布了新的文献求助10
9秒前
冷静完成签到,获得积分10
9秒前
9秒前
归宁完成签到,获得积分10
9秒前
谢大喵发布了新的文献求助10
9秒前
田様应助Kittymiaoo采纳,获得10
9秒前
雪白冷荷发布了新的文献求助10
9秒前
LXhhh完成签到,获得积分10
9秒前
复杂的孤容完成签到,获得积分10
9秒前
吴欣彤完成签到,获得积分10
10秒前
JamesPei应助Spike采纳,获得30
10秒前
量子星尘发布了新的文献求助10
10秒前
在水一方应助我不是笨蛋采纳,获得10
10秒前
竹筏过海应助tuanheqi采纳,获得100
11秒前
Jerryluo完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482